亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel circuit (AID) to improve the accuracy of an energy-efficient in-memory multiplier using a standard 6T-SRAM. The state-of-the-art discharge-based in-SRAM multiplication accelerators suffer from a non-linear behavior in their bit-line (BL, BLB) due to the quadratic nature of the access transistor that leads to a poor signal-to-noise ratio (SNR). In order to achieve linearity in the BLB voltage, we propose a novel root function technique on the access transistor's gate that results in accuracy improvement of on average 10.77 dB SNR compared to state-of-the-art discharge-based topologies. Our analytical methods and a circuit simulation in a 65 nm CMOS technology verify that the proposed technique consumes 0.523 pJ per computation (multiplication, accumulation, and preset) from a power supply of 1V, which is 51.18% lower compared to other state-of-the-art techniques. We have performed an extensive Monte Carlo based simulation for a 4x4 multiplication operation, and our novel technique presents less than 0.086 standard deviations for the worst-case incorrect output scenario.

相關內容

機器學習系統設計系統評估標準

Multiple hypothesis testing has been widely applied to problems dealing with high-dimensional data, e.g., selecting significant variables and controlling the selection error rate. The most prevailing measure of error rate used in the multiple hypothesis testing is the false discovery rate (FDR). In recent years, local false discovery rate (fdr) has drawn much attention, due to its advantage of accessing the confidence of individual hypothesis. However, most methods estimate fdr through p-values or statistics with known null distributions, which are sometimes not available or reliable. Adopting the innovative methodology of competition-based procedures, e.g., knockoff filter, this paper proposes a new approach, named TDfdr, to local false discovery rate estimation, which is free of the p-values or known null distributions. Simulation results demonstrate that TDfdr can accurately estimate the fdr with two competition-based procedures. In real data analysis, the power of TDfdr on variable selection is verified on two biological datasets.

The automotive market is increasingly profitable for cyberattacks with the constant shift toward fully interconnected vehicles. Electronic Control Units (ECUs) installed on cars often operate in a critical and hostile environment. Hence, both carmakers and governments have decided to support a series of initiatives to mitigate risks and threats belonging to the automotive domain. The Controller Area Network (CAN) is the primary communication protocol in the automotive field, and the integrity of the communication over this network is assured through Message Authentication Codes (MAC). However, limitations in throughput and frame size limit the application of this technique to specific versions of the CAN protocol, leaving several vehicles still unprotected. This paper presents CAN Multiplexed MAC (CAN-MM), a new approach exploiting frequency modulation to multiplex MAC data with standard CAN communication. CAN-MM allows transmitting MAC payloads maintaining full-back compatibility with all versions of the standard CAN protocol. Moreover, multiplexing allows sending DATA and MAC simultaneously.

We propose a new framework for studying effective resource allocation in a load balancing system under sparse communication, a problem that arises, for instance, in data centers. At the core of our approach is state approximation, where the load balancer first estimates the servers' states via a carefully designed communication protocol, and subsequently feeds the said approximated state into a load balancing algorithm to generate a routing decision. Specifically, we show that by using a novel approximation algorithm and server-side-adaptive communication protocol, the load balancer can obtain good queue-length approximations using a communication frequency that decays quadratically in the maximum approximation error. Furthermore, using a diffusion-scaled analysis, we prove that the load balancer achieves asymptotically optimal performance whenever the approximation error scales at a lower rate than the square-root of the total processing capacity, which includes as a special case constant-error approximations. Using simulations, we find that the proposed policies achieve performance that matches or outperforms the state-of-the-art load balancing algorithms while reducing communication rates by as much as 90%. Taken as a whole, our results demonstrate that it is possible to achieve good performance even under very sparse communication, and provide strong evidence that approximate states serve as a robust and powerful information intermediary for designing communication-efficient load balancing systems.

We study the problem of online learning in competitive settings in the context of two-sided matching markets. In particular, one side of the market, the agents, must learn about their preferences over the other side, the firms, through repeated interaction while competing with other agents for successful matches. We propose a class of decentralized, communication- and coordination-free algorithms that agents can use to reach to their stable match in structured matching markets. In contrast to prior works, the proposed algorithms make decisions based solely on an agent's own history of play and requires no foreknowledge of the firms' preferences. Our algorithms are constructed by splitting up the statistical problem of learning one's preferences, from noisy observations, from the problem of competing for firms. We show that under realistic structural assumptions on the underlying preferences of the agents and firms, the proposed algorithms incur a regret which grows at most logarithmically in the time horizon. Our results show that, in the case of matching markets, competition need not drastically affect the performance of decentralized, communication and coordination free online learning algorithms.

Reconfigurable intelligent surface (RIS) can effectively control the wavefront of the impinging signals and has emerged as a cost-effective promising solution to improve the spectrum and energy efficiency of wireless systems. Most existing researches on RIS assume that the hardware operations are perfect. However, both physical transceiver and RIS suffer from inevitable hardware impairments in practice, which can lead to severe system performance degradation and increase the complexity of beamforming optimization. Consequently, the existing researches on RIS, including channel estimation, beamforming optimization, spectrum and energy efficiency analysis, etc., cannot directly apply to the case of hardware impairments. In this paper, by taking hardware impairments into consideration, we conduct the joint transmit and reflect beamforming optimization, and reevaluate the system performance. First, we characterize the closed-form estimators of direct and cascaded channels in both single-user and multi-user cases, and analyze the impact of hardware impairments on channel estimation accuracy. Then, the optimal transmit beamforming solution is derived, and a gradient descent method-based algorithm is also proposed to optimize the reflect beamforming. Moreover, we analyze the three types of asymptotic channel capacities with respect to the transmit power, the antenna number, and the reflecting element number. Finally, in terms of the system energy consumption, we analyze the power scaling law and the energy efficiency. Our experimental results also reveal an encouraging phenomenon that the RIS-assisted wireless system with massive reflecting elements can achieve both high spectrum and energy efficiency without the need for massive antennas and without allocating too many resources to optimize the reflect beamforming.

The synthetic control method has become a widely popular tool to estimate causal effects with observational data. Despite this, inference for synthetic control methods remains challenging. Often, inferential results rely on linear factor model data generating processes. In this paper, we characterize the conditions on the factor model primitives (the factor loadings) for which the statistical risk minimizers are synthetic controls (in the simplex). Then, we propose a Bayesian alternative to the synthetic control method that preserves the main features of the standard method and provides a new way of doing valid inference. We explore a Bernstein-von Mises style result to link our Bayesian inference to the frequentist inference. For linear factor model frameworks we show that a maximum likelihood estimator (MLE) of the synthetic control weights can consistently estimate the predictive function of the potential outcomes for the treated unit and that our Bayes estimator is asymptotically close to the MLE in the total variation sense. Through simulations, we show that there is convergence between the Bayes and frequentist approach even in sparse settings. Finally, we apply the method to re-visit the study of the economic costs of the German re-unification. The Bayesian synthetic control method is available in the bsynth R-package.

Modelling pedestrian behavior is crucial in the development and testing of autonomous vehicles. In this work, we present a hierarchical pedestrian behavior model that generates high-level decisions through the use of behavior trees, in order to produce maneuvers executed by a low-level motion planner using an adapted Social Force model. A full implementation of our work is integrated into GeoScenario Server, a scenario definition and execution engine, extending its vehicle simulation capabilities with pedestrian simulation. The extended environment allows simulating test scenarios involving both vehicles and pedestrians to assist in the scenario-based testing process of autonomous vehicles. The presented hierarchical model is evaluated on two real-world data sets collected at separate locations with different road structures. Our model is shown to replicate the real-world pedestrians' trajectories with a high degree of fidelity and a decision-making accuracy of 98% or better, given only high-level routing information for each pedestrian.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

北京阿比特科技有限公司