Recently, we have proposed a framework for verification of agents' abilities in asynchronous multi-agent systems, together with an algorithm for automated reduction of models. The semantics was built on the modeling tradition of distributed systems. As we show here, this can sometimes lead to counterintuitive interpretation of formulas when reasoning about the outcome of strategies. First, the semantics disregards finite paths, and thus yields unnatural evaluation of strategies with deadlocks. Secondly, the semantic representations do not allow to capture the asymmetry between proactive agents and the recipients of their choices. We propose how to avoid the problems by a suitable extension of the representations and change of the execution semantics for asynchronous MAS. We also prove that the model reduction scheme still works in the modified framework.
In this study, we investigate the effectiveness of synthetic data in enhancing hand-object interaction detection within the egocentric vision domain. We introduce a simulator able to generate synthetic images of hand-object interactions automatically labeled with hand-object contact states, bounding boxes, and pixel-wise segmentation masks. Through comprehensive experiments and comparative analyses on three egocentric datasets, VISOR, EgoHOS, and ENIGMA-51, we demonstrate that the use of synthetic data and domain adaptation techniques allows for comparable performance to conventional supervised methods while requiring annotations on only a fraction of the real data. When tested with in-domain synthetic data generated from 3D models of real target environments and objects, our best models show consistent performance improvements with respect to standard fully supervised approaches based on labeled real data only. Our study also sets a new benchmark of domain adaptation for egocentric hand-object interaction detection (HOI-Synth) and provides baseline results to encourage the community to engage in this challenging task. We release the generated data, code, and the simulator at the following link: //iplab.dmi.unict.it/HOI-Synth/.
This study explores the significance of robot hearing systems, emphasizing their importance for robots operating in diverse and uncertain environments. It introduces the hardware design principles using robotaxis as an example, where exterior microphone arrays are employed to detect sound events such as sirens. The challenges, goals, and test methods are discussed, focusing on achieving a suitable signal-to-noise ratio (SNR). Additionally, it presents a preliminary software framework rooted in probabilistic robotics theory, advocating for the integration of robot hearing into the broader context of perception and decision-making. It discusses various models, including Bayes filters, partially observable Markov decision processes (POMDP), and multiagent systems, highlighting the multifaceted roles that robot hearing can play. In conclusion, as service robots continue to evolve, robot hearing research will expand, offering new perspectives and challenges for future development beyond simple sound event classification.
In this paper, we propose a new generic method for detecting the number and locations of structural breaks or change points in piecewise linear models under stationary Gaussian noise. Our method transforms the change point detection problem into identifying local extrema (local maxima and local minima) through kernel smoothing and differentiation of the data sequence. By computing p-values for all local extrema based on peak height distributions of smooth Gaussian processes, we utilize the Benjamini-Hochberg procedure to identify significant local extrema as the detected change points. Our method can distinguish between two types of change points: continuous breaks (Type I) and jumps (Type II). We study three scenarios of piecewise linear signals, namely pure Type I, pure Type II and a mixture of Type I and Type II change points. The results demonstrate that our proposed method ensures asymptotic control of the False Discover Rate (FDR) and power consistency, as sequence length, slope changes, and jump size increase. Furthermore, compared to traditional change point detection methods based on recursive segmentation, our approach only requires a single test for all candidate local extrema, thereby achieving the smallest computational complexity proportionate to the data sequence length. Additionally, numerical studies illustrate that our method maintains FDR control and power consistency, even in non-asymptotic cases when the size of slope changes or jumps is not large. We have implemented our method in the R package "dSTEM" (available from //cran.r-project.org/web/packages/dSTEM).
In this paper, we prove the representation defects of a cascaded convolutional decoder network, considering the capacity of representing different frequency components of an input sample. We conduct the discrete Fourier transform on each channel of the feature map in an intermediate layer of the decoder network. Then, we extend the 2D circular convolution theorem to represent the forward and backward propagations through convolutional layers in the frequency domain. Based on this, we prove three defects in representing feature spectrums. First, we prove that the convolution operation, the zero-padding operation, and a set of other settings all make a convolutional decoder network more likely to weaken high-frequency components. Second, we prove that the upsampling operation generates a feature spectrum, in which strong signals repetitively appear at certain frequencies. Third, we prove that if the frequency components in the input sample and frequency components in the target output for regression have a small shift, then the decoder usually cannot be effectively learned.
In this study, we focus on the development and implementation of a comprehensive ensemble of numerical time series forecasting models, collectively referred to as the Group of Numerical Time Series Prediction Model (G-NM). This inclusive set comprises traditional models such as Autoregressive Integrated Moving Average (ARIMA), Holt-Winters' method, and Support Vector Regression (SVR), in addition to modern neural network models including Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). G-NM is explicitly constructed to augment our predictive capabilities related to patterns and trends inherent in complex natural phenomena. By utilizing time series data relevant to these events, G-NM facilitates the prediction of such phenomena over extended periods. The primary objective of this research is to both advance our understanding of such occurrences and to significantly enhance the accuracy of our forecasts. G-NM encapsulates both linear and non-linear dependencies, seasonalities, and trends present in time series data. Each of these models contributes distinct strengths, from ARIMA's resilience in handling linear trends and seasonality, SVR's proficiency in capturing non-linear patterns, to LSTM's adaptability in modeling various components of time series data. Through the exploitation of the G-NM potential, we strive to advance the state-of-the-art in large-scale time series forecasting models. We anticipate that this research will represent a significant stepping stone in our ongoing endeavor to comprehend and forecast the complex events that constitute the natural world.
In this paper, we develop a generic methodology to encode hierarchical causality structure among observed variables into a neural network in order to improve its predictive performance. The proposed methodology, called causality-informed neural network (CINN), leverages three coherent steps to systematically map the structural causal knowledge into the layer-to-layer design of neural network while strictly preserving the orientation of every causal relationship. In the first step, CINN discovers causal relationships from observational data via directed acyclic graph (DAG) learning, where causal discovery is recast as a continuous optimization problem to avoid the combinatorial nature. In the second step, the discovered hierarchical causality structure among observed variables is systematically encoded into neural network through a dedicated architecture and customized loss function. By categorizing variables in the causal DAG as root, intermediate, and leaf nodes, the hierarchical causal DAG is translated into CINN with a one-to-one correspondence between nodes in the causal DAG and units in the CINN while maintaining the relative order among these nodes. Regarding the loss function, both intermediate and leaf nodes in the DAG graph are treated as target outputs during CINN training so as to drive co-learning of causal relationships among different types of nodes. As multiple loss components emerge in CINN, we leverage the projection of conflicting gradients to mitigate gradient interference among the multiple learning tasks. Computational experiments across a broad spectrum of UCI data sets demonstrate substantial advantages of CINN in predictive performance over other state-of-the-art methods. In addition, an ablation study underscores the value of integrating structural and quantitative causal knowledge in enhancing the neural network's predictive performance incrementally.
In this preliminary study, we provide two methods for estimating the gradients of functions of real value. Both methods are built on derivative estimations that are calculated using the standard method or the Squire-Trapp method for any given direction. Gradients are computed as the average of derivatives in uniformly sampled directions. The first method uses a uniformly distributed set of axes that consists of orthogonal unit vectors that span the space. The second method only uses a uniformly distributed set of unit vectors. Both methods essentially minimize the error through an average of estimations to cancel error terms. Both methods are essentially a conceptual generalization of the method used to estimate normal fractal surfaces.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In the past decade, we have witnessed the rise of deep learning to dominate the field of artificial intelligence. Advances in artificial neural networks alongside corresponding advances in hardware accelerators with large memory capacity, together with the availability of large datasets enabled researchers and practitioners alike to train and deploy sophisticated neural network models that achieve state-of-the-art performance on tasks across several fields spanning computer vision, natural language processing, and reinforcement learning. However, as these neural networks become bigger, more complex, and more widely used, fundamental problems with current deep learning models become more apparent. State-of-the-art deep learning models are known to suffer from issues that range from poor robustness, inability to adapt to novel task settings, to requiring rigid and inflexible configuration assumptions. Ideas from collective intelligence, in particular concepts from complex systems such as self-organization, emergent behavior, swarm optimization, and cellular systems tend to produce solutions that are robust, adaptable, and have less rigid assumptions about the environment configuration. It is therefore natural to see these ideas incorporated into newer deep learning methods. In this review, we will provide a historical context of neural network research's involvement with complex systems, and highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence to advance its current capabilities. To facilitate a bi-directional flow of ideas, we also discuss work that utilize modern deep learning models to help advance complex systems research. We hope this review can serve as a bridge between complex systems and deep learning communities to facilitate the cross pollination of ideas and foster new collaborations across disciplines.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.