亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new generic method for detecting the number and locations of structural breaks or change points in piecewise linear models under stationary Gaussian noise. Our method transforms the change point detection problem into identifying local extrema (local maxima and local minima) through kernel smoothing and differentiation of the data sequence. By computing p-values for all local extrema based on peak height distributions of smooth Gaussian processes, we utilize the Benjamini-Hochberg procedure to identify significant local extrema as the detected change points. Our method can distinguish between two types of change points: continuous breaks (Type I) and jumps (Type II). We study three scenarios of piecewise linear signals, namely pure Type I, pure Type II and a mixture of Type I and Type II change points. The results demonstrate that our proposed method ensures asymptotic control of the False Discover Rate (FDR) and power consistency, as sequence length, slope changes, and jump size increase. Furthermore, compared to traditional change point detection methods based on recursive segmentation, our approach only requires a single test for all candidate local extrema, thereby achieving the smallest computational complexity proportionate to the data sequence length. Additionally, numerical studies illustrate that our method maintains FDR control and power consistency, even in non-asymptotic cases when the size of slope changes or jumps is not large. We have implemented our method in the R package "dSTEM" (available from //cran.r-project.org/web/packages/dSTEM).

相關內容

Identifiability of a mathematical model plays a crucial role in parameterization of the model. In this study, we establish the structural identifiability of a Susceptible-Exposed-Infected-Recovered (SEIR) model given different combinations of input data and investigate practical identifiability with respect to different observable data, data frequency, and noise distributions. The practical identifiability is explored by both Monte Carlo simulations and a Correlation Matrix approach. Our results show that practical identifiability benefits from higher data frequency and data from the peak of an outbreak. The incidence data gives the best practical identifiability results compared to prevalence and cumulative data. In addition, we compare and distinguish the practical identifiability by Monte Carlo simulations and a Correlation Matrix approach, providing insights for when to use which method for other applications.

In this paper, we study the expressivity of scalar, Markovian reward functions in Reinforcement Learning (RL), and identify several limitations to what they can express. Specifically, we look at three classes of RL tasks; multi-objective RL, risk-sensitive RL, and modal RL. For each class, we derive necessary and sufficient conditions that describe when a problem in this class can be expressed using a scalar, Markovian reward. Moreover, we find that scalar, Markovian rewards are unable to express most of the instances in each of these three classes. We thereby contribute to a more complete understanding of what standard reward functions can and cannot express. In addition to this, we also call attention to modal problems as a new class of problems, since they have so far not been given any systematic treatment in the RL literature. We also briefly outline some approaches for solving some of the problems we discuss, by means of bespoke RL algorithms.

In this paper, we propose a web search retrieval approach which automatically detects recency sensitive queries and increases the freshness of the ordinary document ranking by a degree proportional to the probability of the need in recent content. We propose to solve the recency ranking problem by using result diversification principles and deal with the query's non-topical ambiguity appearing when the need in recent content can be detected only with uncertainty. Our offline and online experiments with millions of queries from real search engine users demonstrate the significant increase in satisfaction of users presented with a search result generated by our approach.

In this study, we present a generalizable workflow to identify documents in a historic language with a nonstandard language and script combination, Armeno-Turkish. We introduce the task of detecting distinct patterns of multilinguality based on the frequency of structured language alternations within a document.

In this paper, we propose an online-matching-based model to tackle the two fundamental issues, matching and pricing, existing in a wide range of real-world gig platforms, including ride-hailing (matching riders and drivers), crowdsourcing markets (pairing workers and tasks), and online recommendations (offering items to customers). Our model assumes the arriving distributions of dynamic agents (e.g., riders, workers, and buyers) are accessible in advance, and they can change over time, which is referred to as \emph{Known Heterogeneous Distributions} (KHD). In this paper, we initiate variance analysis for online matching algorithms under KHD. Unlike the popular competitive-ratio (CR) metric, the variance of online algorithms' performance is rarely studied due to inherent technical challenges, though it is well linked to robustness. We focus on two natural parameterized sampling policies, denoted by $\mathsf{ATT}(\gamma)$ and $\mathsf{SAMP}(\gamma)$, which appear as foundational bedrock in online algorithm design. We offer rigorous competitive ratio (CR) and variance analyses for both policies. Specifically, we show that $\mathsf{ATT}(\gamma)$ with $\gamma \in [0,1/2]$ achieves a CR of $\gamma$ and a variance of $\gamma \cdot (1-\gamma) \cdot B$ on the total number of matches with $B$ being the total matching capacity. In contrast, $\mathsf{SAMP}(\gamma)$ with $\gamma \in [0,1]$ accomplishes a CR of $\gamma (1-\gamma)$ and a variance of $\bar{\gamma} (1-\bar{\gamma})\cdot B$ with $\bar{\gamma}=\min(\gamma,1/2)$. All CR and variance analyses are tight and unconditional of any benchmark. As a byproduct, we prove that $\mathsf{ATT}(\gamma=1/2)$ achieves an optimal CR of $1/2$.

In this paper we tackle the problem of persistently covering a complex non-convex environment with a team of robots. We consider scenarios where the coverage quality of the environment deteriorates with time, requiring to constantly revisit every point. As a first step, our solution finds a partition of the environment where the amount of work for each robot, weighted by the importance of each point, is equal. This is achieved using a power diagram and finding an equitable partition through a provably correct distributed control law on the power weights. Compared to other existing partitioning methods, our solution considers a continuous environment formulation with non-convex obstacles. In the second step, each robot computes a graph that gathers sweep-like paths and covers its entire partition. At each planning time, the coverage error at the graph vertices is assigned as weights of the corresponding edges. Then, our solution is capable of efficiently finding the optimal open coverage path through the graph with respect to the coverage error per distance traversed. Simulation and experimental results are presented to support our proposal.

In this paper, we present a novel deep image clustering approach termed PICI, which enforces the partial information discrimination and the cross-level interaction in a joint learning framework. In particular, we leverage a Transformer encoder as the backbone, through which the masked image modeling with two paralleled augmented views is formulated. After deriving the class tokens from the masked images by the Transformer encoder, three partial information learning modules are further incorporated, including the PISD module for training the auto-encoder via masked image reconstruction, the PICD module for employing two levels of contrastive learning, and the CLI module for mutual interaction between the instance-level and cluster-level subspaces. Extensive experiments have been conducted on six real-world image datasets, which demononstrate the superior clustering performance of the proposed PICI approach over the state-of-the-art deep clustering approaches. The source code is available at //github.com/Regan-Zhang/PICI.

In this paper, we focus on numerical approximations of Piecewise Diffusion Markov Processes (PDifMPs), particularly when the explicit flow maps are unavailable. Our approach is based on the thinning method for modelling the jump mechanism and combines the Euler-Maruyama scheme to approximate the underlying flow dynamics. For the proposed approximation schemes, we study both the mean-square and weak convergence. Weak convergence of the algorithms is established by a martingale problem formulation. Moreover, we employ these results to simulate the migration patterns exhibited by moving glioma cells at the microscopic level. Further, we develop and implement a splitting method for this PDifMP model and employ both the Thinned Euler-Maruyama and the splitting scheme in our simulation example, allowing us to compare both methods.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

Salient object detection is a problem that has been considered in detail and many solutions proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. The solution presented in this paper solves this more general problem that considers relative rank, and we propose data and metrics suitable to measuring success in a relative objects saliency landscape. A novel deep learning solution is proposed based on a hierarchical representation of relative saliency and stage-wise refinement. We also show that the problem of salient object subitizing can be addressed with the same network, and our approach exceeds performance of any prior work across all metrics considered (both traditional and newly proposed).

北京阿比特科技有限公司