亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, a fully adaptive finite element algorithm for symmetric second-order elliptic diffusion problems with inexact solver is developed. The discrete systems are treated by a local higher-order geometric multigrid method extending the approach of [Mira\c{c}i, Pape\v{z}, Vohral\'{i}k, SIAM J. Sci. Comput. (2021)]. We show that the iterative solver contracts the algebraic error robustly with respect to the polynomial degree $p \ge 1$ and the (local) mesh size $h$. We further prove that the built-in algebraic error estimator is $h$- and $p$-robustly equivalent to the algebraic error. The proofs rely on suitably chosen robust stable decompositions and a strengthened Cauchy-Schwarz inequality on bisection-generated meshes. Together, this yields that the proposed adaptive algorithm has optimal computational cost. Numerical experiments confirm the theoretical findings.

相關內容

We consider a general nonsymmetric second-order linear elliptic PDE in the framework of the Lax-Milgram lemma. We formulate and analyze an adaptive finite element algorithm with arbitrary polynomial degree that steers the adaptive mesh-refinement and the inexact iterative solution of the arising linear systems. More precisely, the iterative solver employs, as an outer loop, the so-called Zarantonello iteration to symmetrize the system and, as an inner loop, a uniformly contractive algebraic solver, e.g., an optimally preconditioned conjugate gradient method or an optimal geometric multigrid algorithm. We prove that the proposed inexact adaptive iteratively symmetrized finite element method (AISFEM) leads to full linear convergence and, for sufficiently small adaptivity parameters, to optimal convergence rates with respect to the overall computational cost, i.e., the total computational time. Numerical experiments underline the theory.

This paper describes three methods for carrying out non-asymptotic inference on partially identified parameters that are solutions to a class of optimization problems. Applications in which the optimization problems arise include estimation under shape restrictions, estimation of models of discrete games, and estimation based on grouped data. The partially identified parameters are characterized by restrictions that involve the unknown population means of observed random variables in addition to structural parameters. Inference consists of finding confidence intervals for functions of the structural parameters. Our theory provides finite-sample lower bounds on the coverage probabilities of the confidence intervals under three sets of assumptions of increasing strength. With the moderate sample sizes found in most economics applications, the bounds become tighter as the assumptions strengthen. We discuss estimation of population parameters that the bounds depend on and contrast our methods with alternative methods for obtaining confidence intervals for partially identified parameters. The results of Monte Carlo experiments and empirical examples illustrate the usefulness of our method.

Approximate Bayesian Computation (ABC) enables statistical inference in simulator-based models whose likelihoods are difficult to calculate but easy to simulate from. ABC constructs a kernel-type approximation to the posterior distribution through an accept/reject mechanism which compares summary statistics of real and simulated data. To obviate the need for summary statistics, we directly compare empirical distributions with a Kullback-Leibler (KL) divergence estimator obtained via contrastive learning. In particular, we blend flexible machine learning classifiers within ABC to automate fake/real data comparisons. We consider the traditional accept/reject kernel as well as an exponential weighting scheme which does not require the ABC acceptance threshold. Our theoretical results show that the rate at which our ABC posterior distributions concentrate around the true parameter depends on the estimation error of the classifier. We derive limiting posterior shape results and find that, with a properly scaled exponential kernel, asymptotic normality holds. We demonstrate the usefulness of our approach on simulated examples as well as real data in the context of stock volatility estimation.

In sparse estimation, in which the sum of the loss function and the regularization term is minimized, methods such as the proximal gradient method and the proximal Newton method are applied. The former is slow to converge to a solution, while the latter converges quickly but is inefficient for problems such as group lasso problems. In this paper, we examine how to efficiently find a solution by finding the convergence destination of the proximal gradient method. However, the case in which the Lipschitz constant of the derivative of the loss function is unknown has not been studied theoretically, and only the Newton method has been proposed for the case in which the Lipschitz constant is known. We show that the Newton method converges when the Lipschitz constant is unknown and extend the theory. Furthermore, we propose a new quasi-Newton method that avoids Hessian calculations and improves efficiency, and we prove that it converges quickly, providing a theoretical guarantee. Finally, numerical experiments show that the proposed method can significantly improve the efficiency.

We propose a new method for estimating the minimizer $\boldsymbol{x}^*$ and the minimum value $f^*$ of a smooth and strongly convex regression function $f$ from the observations contaminated by random noise. Our estimator $\boldsymbol{z}_n$ of the minimizer $\boldsymbol{x}^*$ is based on a version of the projected gradient descent with the gradient estimated by a regularized local polynomial algorithm. Next, we propose a two-stage procedure for estimation of the minimum value $f^*$ of regression function $f$. At the first stage, we construct an accurate enough estimator of $\boldsymbol{x}^*$, which can be, for example, $\boldsymbol{z}_n$. At the second stage, we estimate the function value at the point obtained in the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $\boldsymbol{z}_n$, and for the risk of estimating $f^*$. We establish minimax lower bounds showing that, under certain choice of parameters, the proposed algorithms achieve the minimax optimal rates of convergence on the class of smooth and strongly convex functions.

We study local canonical labeling algorithms on an Erd\H{o}s--R\'enyi random graph $G(n,p_n)$. A canonical labeling algorithm assigns a unique label to each vertex of an unlabeled graph such that the labels are invariant under isomorphism. Here we focus on local algorithms, where the label of each vertex depends only on its low-depth neighborhood. Czajka and Pandurangan showed that the degree profile of a vertex (i.e., the sorted list of the degrees of its neighbors) gives a canonical labeling with high probability when $n p_n = \omega( \log^{4}(n) / \log \log n )$ (and $p_{n} \leq 1/2$); subsequently, Mossel and Ross showed that the same holds when $n p_n = \omega( \log^{2}(n) )$. Our first result shows that their analysis essentially cannot be improved: we prove that when $n p_n = o( \log^{2}(n) / (\log \log n)^{3} )$, with high probability there exist distinct vertices with isomorphic $2$-neighborhoods. Our main result is a positive counterpart to this, showing that $3$-neighborhoods give a canonical labeling when $n p_n \geq (1+\delta) \log n$ (and $p_n \leq 1/2$); this improves a recent result of Ding, Ma, Wu, and Xu, completing the picture above the connectivity threshold. We also discuss implications for random graph isomorphism and shotgun assembly of random graphs.

We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space. Focusing on a stochastic query model that provides noisy evaluations of the operator, we analyze a variance-reduced stochastic approximation scheme, and establish non-asymptotic bounds for both the operator defect and the estimation error, measured in an arbitrary semi-norm. In contrast to worst-case guarantees, our bounds are instance-dependent, and achieve the local asymptotic minimax risk non-asymptotically. For linear operators, contractivity can be relaxed to multi-step contractivity, so that the theory can be applied to problems like average reward policy evaluation problem in reinforcement learning. We illustrate the theory via applications to stochastic shortest path problems, two-player zero-sum Markov games, as well as policy evaluation and $Q$-learning for tabular Markov decision processes.

This note complements the upcoming paper "One-Way Ticket to Las Vegas and the Quantum Adversary" by Belovs and Yolcu, to be presented at QIP 2023. I develop the ideas behind the adversary bound - universal algorithm duality therein in a different form. This form may be faster to understand for a general quantum information audience: It avoids defining the "unidirectional filtered $\gamma _{2}$-bound" and relating it to query algorithms explicitly. This proof is also more general because the lower bound (and universal query algorithm) apply to a class of optimal control problems rather than just query problems. That is in addition to the advantages to be discussed in Belovs-Yolcu, namely the more elementary algorithm and correctness proof that avoids phase estimation and spectral analysis, allows for limited treatment of noise, and removes another $\Theta(\log(1/\epsilon))$ factor from the runtime compared to the previous discrete-time algorithm.

Ordinal optimization (OO) is a widely-studied technique for optimizing discrete-event dynamic systems (DEDS). It evaluates the performance of the system designs in a finite set by sampling and aims to correctly make ordinal comparison of the designs. A well-known method in OO is the optimal computing budget allocation (OCBA). It builds the optimality conditions for the number of samples allocated to each design, and the sample allocation that satisfies the optimality conditions is shown to asymptotically maximize the probability of correct selection for the best design. In this paper, we investigate two popular OCBA algorithms. With known variances for samples of each design, we characterize their convergence rates with respect to different performance measures. We first demonstrate that the two OCBA algorithms achieve the optimal convergence rate under measures of probability of correct selection and expected opportunity cost. It fills the void of convergence analysis for OCBA algorithms. Next, we extend our analysis to the measure of cumulative regret, a main measure studied in the field of machine learning. We show that with minor modification, the two OCBA algorithms can reach the optimal convergence rate under cumulative regret. It indicates the potential of broader use of algorithms designed based on the OCBA optimality conditions.

Two combined numerical methods for solving time-varying semilinear differential-algebraic equations (DAEs) are obtained. These equations are also called degenerate DEs, descriptor systems, operator-differential equations and DEs on manifolds. The convergence and correctness of the methods are proved. When constructing methods we use, in particular, time-varying spectral projectors which can be numerically found. This enables to numerically solve and analyze the considered DAE in the original form without additional analytical transformations. To improve the accuracy of the second method, recalculation (a ``predictor-corrector'' scheme) is used. Note that the developed methods are applicable to the DAEs with the continuous nonlinear part which may not be continuously differentiable in $t$, and that the restrictions of the type of the global Lipschitz condition, including the global condition of contractivity, are not used in the theorems on the global solvability of the DAEs and on the convergence of the numerical methods. This enables to use the developed methods for the numerical solution of more general classes of mathematical models. For example, the functions of currents and voltages in electric circuits may not be differentiable or may be approximated by nondifferentiable functions. Presented conditions for the global solvability of the DAEs ensure the existence of an unique exact global solution for the corresponding initial value problem, which enables to compute approximate solutions on any given time interval (provided that the conditions of theorems or remarks on the convergence of the methods are fulfilled). In the paper, the numerical analysis of the mathematical model for a certain electrical circuit, which demonstrates the application of the presented theorems and numerical methods, is carried out.

北京阿比特科技有限公司