Variational Autoencoder based Bayesian Optimization (VAE-BO) has demonstrated its excellent performance in addressing high-dimensional structured optimization problems. However, current mainstream methods overlook the potential of utilizing a pool of unlabeled data to construct the latent space, while only concentrating on designing sophisticated models to leverage the labeled data. Despite their effective usage of labeled data, these methods often require extra network structures, additional procedure, resulting in computational inefficiency. To address this issue, we propose a novel method to effectively utilize unlabeled data with the guidance of labeled data. Specifically, we tailor the pseudo-labeling technique from semi-supervised learning to explicitly reveal the relative magnitudes of optimization objective values hidden within the unlabeled data. Based on this technique, we assign appropriate training weights to unlabeled data to enhance the construction of a discriminative latent space. Furthermore, we treat the VAE encoder and the Gaussian Process (GP) in Bayesian optimization as a unified deep kernel learning process, allowing the direct utilization of labeled data, which we term as Gaussian Process guidance. This directly and effectively integrates the goal of improving GP accuracy into the VAE training, thereby guiding the construction of the latent space. The extensive experiments demonstrate that our proposed method outperforms existing VAE-BO algorithms in various optimization scenarios. Our code will be published at //github.com/TaicaiChen/PG-LBO.
Zero-shot text-to-speech (TTS) has gained significant attention due to its powerful voice cloning capabilities, requiring only a few seconds of unseen speaker voice prompts. However, all previous work has been developed for cloud-based systems. Taking autoregressive models as an example, although these approaches achieve high-fidelity voice cloning, they fall short in terms of inference speed, model size, and robustness. Therefore, we propose MobileSpeech, which is a fast, lightweight, and robust zero-shot text-to-speech system based on mobile devices for the first time. Specifically: 1) leveraging discrete codec, we design a parallel speech mask decoder module called SMD, which incorporates hierarchical information from the speech codec and weight mechanisms across different codec layers during the generation process. Moreover, to bridge the gap between text and speech, we introduce a high-level probabilistic mask that simulates the progression of information flow from less to more during speech generation. 2) For speaker prompts, we extract fine-grained prompt duration from the prompt speech and incorporate text, prompt speech by cross attention in SMD. We demonstrate the effectiveness of MobileSpeech on multilingual datasets at different levels, achieving state-of-the-art results in terms of generating speed and speech quality. MobileSpeech achieves RTF of 0.09 on a single A100 GPU and we have successfully deployed MobileSpeech on mobile devices. Audio samples are available at \url{//mobilespeech.github.io/} .
Code Large Language Models (Code LLMs) have demonstrated outstanding performance in code-related tasks. Several instruction tuning approaches have been proposed to boost the code generation performance of pre-trained Code LLMs. In this paper, we introduce a diverse instruction model (DolphCoder) with self-evaluating for code generation. It learns diverse instruction targets and combines a code evaluation objective to enhance its code generation ability. Our model achieves superior performance on the HumanEval and MBPP benchmarks, demonstrating new insights for future code instruction tuning work. Our key findings are: (1) Augmenting more diverse responses with distinct reasoning paths increases the code capability of LLMs. (2) Improving one's ability to evaluate the correctness of code solutions also enhances their ability to create it.
Jailbreaks on Large language models (LLMs) have recently received increasing attention. For a comprehensive assessment of LLM safety, it is essential to consider jailbreaks with diverse attributes, such as contextual coherence and sentiment/stylistic variations, and hence it is beneficial to study controllable jailbreaking, i.e. how to enforce control on LLM attacks. In this paper, we formally formulate the controllable attack generation problem, and build a novel connection between this problem and controllable text generation, a well-explored topic of natural language processing. Based on this connection, we adapt the Energy-based Constrained Decoding with Langevin Dynamics (COLD), a state-of-the-art, highly efficient algorithm in controllable text generation, and introduce the COLD-Attack framework which unifies and automates the search of adversarial LLM attacks under a variety of control requirements such as fluency, stealthiness, sentiment, and left-right-coherence. The controllability enabled by COLD-Attack leads to diverse new jailbreak scenarios which not only cover the standard setting of generating fluent suffix attacks, but also allow us to address new controllable attack settings such as revising a user query adversarially with minimal paraphrasing, and inserting stealthy attacks in context with left-right-coherence. Our extensive experiments on various LLMs (Llama-2, Mistral, Vicuna, Guanaco, GPT-3.5) show COLD-Attack's broad applicability, strong controllability, high success rate, and attack transferability. Our code is available at //github.com/Yu-Fangxu/COLD-Attack.
Audio-text pre-training (ATP) has witnessed remarkable strides across a variety of downstream tasks. Yet, most existing pretrained audio models only specialize in either discriminative tasks or generative tasks. In this study, we develop SLIT, a novel ATP framework which transfers flexibly to both audio-text understanding and generation tasks, bootstrapping audio-text pre-training from frozen pretrained audio encoders and large language models. To bridge the modality gap during pre-training, we leverage Q-Former, which undergoes a multi-stage pre-training process. The first stage enhances audio-text representation learning from a frozen audio encoder, while the second stage boosts audio-to-text generative learning with a frozen language model. Furthermore, we introduce an ATP instruction tuning strategy, which enables flexible and informative feature extraction tailered to the given instructions for different tasks. Experiments show that SLIT achieves superior performances on a variety of audio-text understanding and generation tasks, and even demonstrates strong generalization capabilities when directly applied to zero-shot scenarios.
Online A/B testing is widely used in the internet industry to inform decisions on new feature roll-outs. For online marketplaces (such as advertising markets), standard approaches to A/B testing may lead to biased results when buyers operate under a budget constraint, as budget consumption in one arm of the experiment impacts performance of the other arm. To counteract this interference, one can use a budget-split design where the budget constraint operates on a per-arm basis and each arm receives an equal fraction of the budget, leading to ``budget-controlled A/B testing.'' Despite clear advantages of budget-controlled A/B testing, performance degrades when budget are split too small, limiting the overall throughput of such systems. In this paper, we propose a parallel budget-controlled A/B testing design where we use market segmentation to identify submarkets in the larger market, and we run parallel experiments on each submarket. Our contributions are as follows: First, we introduce and demonstrate the effectiveness of the parallel budget-controlled A/B test design with submarkets in a large online marketplace environment. Second, we formally define market interference in first-price auction markets using the first price pacing equilibrium (FPPE) framework. Third, we propose a debiased surrogate that eliminates the first-order bias of FPPE, drawing upon the principles of sensitivity analysis in mathematical programs. Fourth, we derive a plug-in estimator for the surrogate and establish its asymptotic normality. Fifth, we provide an estimation procedure for submarket parallel budget-controlled A/B tests. Finally, we present numerical examples on semi-synthetic data, confirming that the debiasing technique achieves the desired coverage properties.
3D Gaussian Splatting (3D-GS) has emerged as a significant advancement in the field of Computer Graphics, offering explicit scene representation and novel view synthesis without the reliance on neural networks, such as Neural Radiance Fields (NeRF). This technique has found diverse applications in areas such as robotics, urban mapping, autonomous navigation, and virtual reality/augmented reality, just name a few. Given the growing popularity and expanding research in 3D Gaussian Splatting, this paper presents a comprehensive survey of relevant papers from the past year. We organize the survey into taxonomies based on characteristics and applications, providing an introduction to the theoretical underpinnings of 3D Gaussian Splatting. Our goal through this survey is to acquaint new researchers with 3D Gaussian Splatting, serve as a valuable reference for seminal works in the field, and inspire future research directions, as discussed in our concluding section.
Recent advancement in Automatic Speech Recognition (ASR) has produced large AI models, which become impractical for deployment in mobile devices. Model quantization is effective to produce compressed general-purpose models, however such models may only be deployed to a restricted sub-domain of interest. We show that ASR models can be personalized during quantization while relying on just a small set of unlabelled samples from the target domain. To this end, we propose myQASR, a mixed-precision quantization method that generates tailored quantization schemes for diverse users under any memory requirement with no fine-tuning. myQASR automatically evaluates the quantization sensitivity of network layers by analysing the full-precision activation values. We are then able to generate a personalised mixed-precision quantization scheme for any pre-determined memory budget. Results for large-scale ASR models show how myQASR improves performance for specific genders, languages, and speakers.
Large language models (LLMs) have made significant advancements in code-related tasks, yet many LLMs treat code as simple sequences, neglecting its structured nature. We introduce AST-T5, a novel pretraining paradigm that leverages the Abstract Syntax Tree (AST) for enhanced code generation, transpilation, and understanding. Using dynamic programming, our AST-Aware Segmentation retains code structure, while our AST-Aware Span Corruption objective equips the model to reconstruct various code structures. Unlike other models, AST-T5 avoids intricate program analyses or architectural changes, so it integrates seamlessly with any encoder-decoder Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized LMs across various code-related tasks. Structure-awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model are publicly available at //github.com/gonglinyuan/ast_t5.
Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.