亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the classic implementation of the LOBPCG method, orthogonalization and the R-R (Rayleigh-Ritz) procedure cost nonignorable CPU time. Especially this consumption could be very expensive to deal with situations with large block sizes. In this paper, we propose an orthogonalization-free framework of implementing the LOBPCG method for SCF (self-consistent field) iterations in solving the Kohn-Sham equation. In this framework, orthogonalization is avoided in calculations, which can decrease the computational complexity. And the R-R procedure is implemented parallelly through OpenMP, which can further reduce computational time. During numerical experiments, an effective preconditioning strategy is designed, which can accelerate the LOBPCG method remarkably. Consequently, the efficiency of the LOBPCG method can be significantly improved. Based on this, the SCF iteration can solve the Kohn-Sham equation efficiently. A series of numerical experiments are inducted to demonstrate the effectiveness of our implementation, in which significant improvements in computational time can be observed.

相關內容

To minimize the average of a set of log-convex functions, the stochastic Newton method iteratively updates its estimate using subsampled versions of the full objective's gradient and Hessian. We contextualize this optimization problem as sequential Bayesian inference on a latent state-space model with a discriminatively-specified observation process. Applying Bayesian filtering then yields a novel optimization algorithm that considers the entire history of gradients and Hessians when forming an update. We establish matrix-based conditions under which the effect of older observations diminishes over time, in a manner analogous to Polyak's heavy ball momentum. We illustrate various aspects of our approach with an example and review other relevant innovations for the stochastic Newton method.

We consider the solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order (HHO) methods. The two resulting second-order elliptic problems can be decoupled via the introduction of a new unknown, corresponding to the boundary value of the solution of the first Laplacian problem. This technique yields a global linear problem that can be solved iteratively via a Krylov-type method. More precisely, at each iteration of the scheme, two second-order elliptic problems have to be solved, and a normal derivative on the boundary has to be computed. In this work, we specialize this scheme for the HHO discretization. To this aim, an explicit technique to compute the discrete normal derivative of an HHO solution of a Laplacian problem is proposed. Moreover, we show that the resulting discrete scheme is well-posed. Finally, a new preconditioner is designed to speed up the convergence of the Krylov method. Numerical experiments assessing the performance of the proposed iterative algorithm on both two- and three-dimensional test cases are presented.

In this paper we develop a numerical method for efficiently approximating solutions of certain Zakai equations in high dimensions. The key idea is to transform a given Zakai SPDE into a PDE with random coefficients. We show that under suitable regularity assumptions on the coefficients of the Zakai equation, the corresponding random PDE admits a solution random field which, for almost all realizations of the random coefficients, can be written as a classical solution of a linear parabolic PDE. This makes it possible to apply the Feynman--Kac formula to obtain an efficient Monte Carlo scheme for computing approximate solutions of Zakai equations. The approach achieves good results in up to 25 dimensions with fast run times.

A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.

Quantization summarizes continuous distributions by calculating a discrete approximation. Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono\"i cells, that can be seen as clusters, and constructs a discrete distribution based on their centroids and probabilistic masses. Lloyd's algorithm estimates the optimal centroids in a minimal expected distance sense, but this approach poses significant challenges in scenarios where data evaluation is costly, and relates to rare events. Then, the single cluster associated to no event takes the majority of the probability mass. In this context, a metamodel is required and adapted sampling methods are necessary to increase the precision of the computations on the rare clusters.

In this paper, we present two non-overlapping Schwarz algorithms for the hybridizable discontinuous Galerkin (HDG) method. The first algorithm is based on the Neumann-Neumann method. The second one is an iterative algorithm uses both trace and flux interface unknowns on interfaces between subdomains. Numerical results are provided to verify the validity of our algorithms.

Simulation of wave propagation in poroelastic half-spaces presents a common challenge in fields like geomechanics and biomechanics, requiring Absorbing Boundary Conditions (ABCs) at the semi-infinite space boundaries. Perfectly Matched Layers (PML) are a popular choice due to their excellent wave absorption properties. However, PML implementation can lead to problems with unknown stresses or strains, time convolutions, or PDE systems with Auxiliary Differential Equations (ADEs), which increases computational complexity and resource consumption. This article presents two new PML formulations for arbitrary poroelastic domains. The first formulation is a fully-mixed form that employs time-history variables instead of ADEs, reducing the number of unknowns and mathematical operations. The second formulation is a hybrid form that restricts the fully-mixed formulation to the PML domain, resulting in smaller matrices for the solver while preserving governing equations in the interior domain. The fully-mixed formulation introduces three scalar variables over the whole domain, whereas the hybrid form confines them to the PML domain. The proposed formulations were tested in three numerical experiments in geophysics using realistic parameters for soft sites with free surfaces. The results were compared with numerical solutions from extended domains and simpler ABCs, such as paraxial approximation, demonstrating the accuracy, efficiency, and precision of the proposed methods. The article also discusses the applicability of these methods to complex media and their extension to the Multiaxial PML formulation. The codes for the simulations are available for download from \url{//github.com/hmella/POROUS-HYBRID-PML}.

This study presents a novel high-order numerical method designed for solving the two-dimensional time-fractional convection-diffusion (TFCD) equation. The Caputo definition is employed to characterize the time-fractional derivative. A weak singularity at the initial time ($t=0$) is encountered in the considered problem, which is effectively managed by adopting a discretization approach for the time-fractional derivative, where Alikhanov's high-order L2-1$_\sigma$ formula is applied on a non-uniform fitted mesh, resulting in successful tackling of the singularity. A high-order two-dimensional compact operator is implemented to approximate the spatial variables. The alternating direction implicit (ADI) approach is then employed to solve the resulting system of equations by decomposing the two-dimensional problem into two separate one-dimensional problems. The theoretical analysis, encompassing both stability and convergence aspects, has been conducted comprehensively, and it has shown that method is convergent with an order $\mathcal O\left(N_t^{-\min\{3-\alpha,\theta\alpha,1+2\alpha,2+\alpha\}}+h_x^4+h_y^4\right)$, where $\alpha\in(0,1)$ represents the order of the fractional derivative, $N_t$ is the temporal discretization parameter and $h_x$ and $h_y$ represent spatial mesh widths. Moreover, the parameter $\theta$ is utilized in the construction of the fitted mesh.

This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.

The languages of mathematical physics and modelling are endowed with a rich "grammar of dimensions" that common abstractions of programming languages fail to represent. We propose a dependently typed domain-specific language (embedded in Idris) that captures this grammar. We apply it to explain basic notions of dimensional analysis and Buckingham's Pi theorem. We argue that the language makes mathematical physics more accessible to computer scientists and functional programming more palatable to modelers and physicists.

北京阿比特科技有限公司