亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we report on the results and lessons learned from different disciplines while researching the loosely-defined problem of hearing a city. We present Xenakis, a tool for the musification of urban data, which is able to capture some features of a city's topology through the distribution of street orientations, and turn it into a (very) small piece of music, a loop, which can be used as building block for compositions. Besides providing complementary visual and auditory channels to interface with this data, we also allow the piping of \textit{midi} signals to other applications. This concept was developed by visualization researchers collaborating with musicians using design study methodologies in an open-ended way. Our results include musical tracks, and we take advantage of the scope of alt.VIS to communicate our research in a sincere, humorous, and engaging format.

相關內容

Recent advances in machine learning have created increasing interest in solving visual computing problems using a class of coordinate-based neural networks that parametrize physical properties of scenes or objects across space and time. These methods, which we call neural fields, have seen successful application in the synthesis of 3D shapes and image, animation of human bodies, 3D reconstruction, and pose estimation. However, due to rapid progress in a short time, many papers exist but a comprehensive review and formulation of the problem has not yet emerged. In this report, we address this limitation by providing context, mathematical grounding, and an extensive review of literature on neural fields. This report covers research along two dimensions. In Part I, we focus on techniques in neural fields by identifying common components of neural field methods, including different representations, architectures, forward mapping, and generalization methods. In Part II, we focus on applications of neural fields to different problems in visual computing, and beyond (e.g., robotics, audio). Our review shows the breadth of topics already covered in visual computing, both historically and in current incarnations, demonstrating the improved quality, flexibility, and capability brought by neural fields methods. Finally, we present a companion website that contributes a living version of this review that can be continually updated by the community.

Music classification is a music information retrieval (MIR) task to classify music items to labels such as genre, mood, and instruments. It is also closely related to other concepts such as music similarity and musical preference. In this tutorial, we put our focus on two directions - the recent training schemes beyond supervised learning and the successful application of music classification models. The target audience for this web book is researchers and practitioners who are interested in state-of-the-art music classification research and building real-world applications. We assume the audience is familiar with the basic machine learning concepts. In this book, we present three lectures as follows: 1. Music classification overview: Task definition, applications, existing approaches, datasets, 2. Beyond supervised learning: Semi- and self-supervised learning for music classification, 3. Towards real-world applications: Less-discussed, yet important research issues in practice.

Economic theory distinguishes between principal-agent settings in which the agent has a private type and settings in which the agent takes a hidden action. Many practical problems, however, involve aspects of both. For example, brand X may seek to hire an influencer Y to create sponsored content to be posted on social media platform Z. This problem has a hidden action component (the brand may not be able or willing to observe the amount of effort exerted by the influencer), but also a private type component (influencers may have different costs per unit-of-effort). This "effort" and "cost per unit-of-effort" perspective naturally leads to a principal-agent problem with hidden action and single-dimensional private type, which generalizes both the classic principal-agent hidden action model of contract theory \`a la Grossman and Hart [1983] and the (procurement version) of single-dimensional mechanism design \`a la Myerson [1981]. A natural goal in this model is to design an incentive-compatible contract, which consist of an allocation rule that maps types to actions, and a payment rule that maps types to payments for the stochastic outcomes of the chosen action. Our main contribution is a linear programming (LP) duality based characterization of implementable allocation rules for this model, which applies to both discrete and continuous types. This characterization shares important features of Myerson's celebrated characterization result, but also departs from it in significant ways. We present several applications, including a polynomial-time algorithm for finding the optimal contract with a constant number of actions. This is in sharp contrast to recent work on hidden action problems with multi-dimensional private information, which has shown that the problem of computing an optimal contract for constant numbers of actions is APX-hard.

Originally developed in fields such as robotics and autonomous driving with image-based navigation in mind, deep learning-based single-image depth estimation (SIDE) has found great interest in the wider image analysis community. Remote sensing is no exception, as the possibility to estimate height maps from single aerial or satellite imagery bears great potential in the context of topographic reconstruction. A few pioneering investigations have demonstrated the general feasibility of single image height prediction from optical remote sensing images and motivate further studies in that direction. With this paper, we present the first-ever demonstration of deep learning-based single image height prediction for the other important sensor modality in remote sensing: synthetic aperture radar (SAR) data. Besides the adaptation of a convolutional neural network (CNN) architecture for SAR intensity images, we present a workflow for the generation of training data, and extensive experimental results for different SAR imaging modes and test sites. Since we put a particular emphasis on transferability, we are able to confirm that deep learning-based single-image height estimation is not only possible, but also transfers quite well to unseen data, even if acquired by different imaging modes and imaging parameters.

Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous data sets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their application to modeling tabular data (inference or generation) remains highly challenging. This work provides an overview of state-of-the-art deep learning methods for tabular data. We start by categorizing them into three groups: data transformations, specialized architectures, and regularization models. We then provide a comprehensive overview of the main approaches in each group. A discussion of deep learning approaches for generating tabular data is complemented by strategies for explaining deep models on tabular data. Our primary contribution is to address the main research streams and existing methodologies in this area, while highlighting relevant challenges and open research questions. To the best of our knowledge, this is the first in-depth look at deep learning approaches for tabular data. This work can serve as a valuable starting point and guide for researchers and practitioners interested in deep learning with tabular data.

Utilizing Visualization-oriented Natural Language Interfaces (V-NLI) as a complementary input modality to direct manipulation for visual analytics can provide an engaging user experience. It enables users to focus on their tasks rather than worrying about operating the interface to visualization tools. In the past two decades, leveraging advanced natural language processing technologies, numerous V-NLI systems have been developed both within academic research and commercial software, especially in recent years. In this article, we conduct a comprehensive review of the existing V-NLIs. In order to classify each paper, we develop categorical dimensions based on a classic information visualization pipeline with the extension of a V-NLI layer. The following seven stages are used: query understanding, data transformation, visual mapping, view transformation, human interaction, context management, and presentation. Finally, we also shed light on several promising directions for future work in the community.

Time series modeling has attracted extensive research efforts; however, achieving both reliable efficiency and interpretability from a unified model still remains a challenging problem. Among the literature, shapelets offer interpretable and explanatory insights in the classification tasks, while most existing works ignore the differing representative power at different time slices, as well as (more importantly) the evolution pattern of shapelets. In this paper, we propose to extract time-aware shapelets by designing a two-level timing factor. Moreover, we define and construct the shapelet evolution graph, which captures how shapelets evolve over time and can be incorporated into the time series embeddings by graph embedding algorithms. To validate whether the representations obtained in this way can be applied effectively in various scenarios, we conduct experiments based on three public time series datasets, and two real-world datasets from different domains. Experimental results clearly show the improvements achieved by our approach compared with 17 state-of-the-art baselines.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

The emerging technique of deep learning has been widely applied in many different areas. However, when adopted in a certain specific domain, this technique should be combined with domain knowledge to improve efficiency and accuracy. In particular, when analyzing the applications of deep learning in sentiment analysis, we found that the current approaches are suffering from the following drawbacks: (i) the existing works have not paid much attention to the importance of different types of sentiment terms, which is an important concept in this area; and (ii) the loss function currently employed does not well reflect the degree of error of sentiment misclassification. To overcome such problem, we propose to combine domain knowledge with deep learning. Our proposal includes using sentiment scores, learnt by regression, to augment training data; and introducing penalty matrix for enhancing the loss function of cross entropy. When experimented, we achieved a significant improvement in classification results.

Steve Jobs, one of the greatest visionaries of our time was quoted in 1996 saying "a lot of times, people do not know what they want until you show it to them" [38] indicating he advocated products to be developed based on human intuition rather than research. With the advancements of mobile devices, social networks and the Internet of Things, enormous amounts of complex data, both structured and unstructured are being captured in hope to allow organizations to make better business decisions as data is now vital for an organizations success. These enormous amounts of data are referred to as Big Data, which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data-lifecycle, Privacy & Security, and Data Representation. This paper reviews the fundamental concept of Big Data, the Data Storage domain, the MapReduce programming paradigm used in processing these large datasets, and focuses on two case studies showing the effectiveness of Big Data Analytics and presents how it could be of greater good in the future if handled appropriately.

北京阿比特科技有限公司