In this paper we explore the challenges and strategies for enhancing the robustness of $k$-means clustering algorithms against adversarial manipulations. We evaluate the vulnerability of clustering algorithms to adversarial attacks, emphasising the associated security risks. Our study investigates the impact of incremental attack strength on training, introduces the concept of transferability between supervised and unsupervised models, and highlights the sensitivity of unsupervised models to sample distributions. We additionally introduce and evaluate an adversarial training method that improves testing performance in adversarial scenarios, and we highlight the importance of various parameters in the proposed training method, such as continuous learning, centroid initialisation, and adversarial step-count.
Erd\H{o}s and West (Discrete Mathematics'85) considered the class of $n$ vertex intersection graphs which have a {\em $d$-dimensional} {\em $t$-representation}, that is, each vertex of a graph in the class has an associated set consisting of at most $t$ $d$-dimensional axis-parallel boxes. In particular, for a graph $G$ and for each $d \geq 1$, they consider $i_d(G)$ to be the minimum $t$ for which $G$ has such a representation. For fixed $t$ and $d$, they consider the class of $n$ vertex labeled graphs for which $i_d(G) \leq t$, and prove an upper bound of $(2nt+\frac{1}{2})d \log n - (n - \frac{1}{2})d \log(4\pi t)$ on the logarithm of size of the class. In this work, for fixed $t$ and $d$ we consider the class of $n$ vertex unlabeled graphs which have a {\em $d$-dimensional $t$-representation}, denoted by $\mathcal{G}_{t,d}$. We address the problem of designing a succinct data structure for the class $\mathcal{G}_{t,d}$ in an attempt to generalize the relatively recent results on succinct data structures for interval graphs (Algorithmica'21). To this end, for each $n$ such that $td^2$ is in $o(n / \log n)$, we first prove a lower bound of $(2dt-1)n \log n - O(ndt \log \log n)$-bits on the size of any data structure for encoding an arbitrary graph that belongs to $\mathcal{G}_{t,d}$. We then present a $((2dt-1)n \log n + dt\log t + o(ndt \log n))$-bit data structure for $\mathcal{G}_{t,d}$ that supports navigational queries efficiently. Contrasting this data structure with our lower bound argument, we show that for each fixed $t$ and $d$, and for all $n \geq 0$ when $td^2$ is in $o(n/\log n)$ our data structure for $\mathcal{G}_{t,d}$ is succinct. As a byproduct, we also obtain succinct data structures for graphs of bounded boxicity (denoted by $d$ and $t = 1$) and graphs of bounded interval number (denoted by $t$ and $d=1$) when $td^2$ is in $o(n/\log n)$.
The Freeze-Tag Problem, introduced in Arkin et al. (SODA'02) consists of waking up a swarm of $n$ robots, starting from a single active robot. In the basic geometric version, every robot is given coordinates in the plane. As soon as a robot is awakened, it can move towards inactive robots to wake them up. The goal is to minimize the wake-up time of the last robot, the makespan. Despite significant progress on the computational complexity of this problem and on approximation algorithms, the characterization of exact bounds on the makespan remains one of the main open questions. In this paper, we settle this question for the $\ell_1$-norm, showing that a makespan of at most $5r$ can always be achieved, where $r$ is the maximum distance between the initial active robot and any sleeping robot. Moreover, a schedule achieving a makespan of at most $5r$ can be computed in optimal time $O(n)$. Both bounds, the time and the makespan are optimal. This implies a new upper bound of $5\sqrt{2}r \approx 7.07r$ on the makespan in the $\ell_2$-norm, improving the best known bound so far $(5+2\sqrt{2}+\sqrt{5})r \approx 10.06r$.
We introduce a novel sufficient dimension-reduction (SDR) method which is robust against outliers using $\alpha$-distance covariance (dCov) in dimension-reduction problems. Under very mild conditions on the predictors, the central subspace is effectively estimated and model-free advantage without estimating link function based on the projection on the Stiefel manifold. We establish the convergence property of the proposed estimation under some regularity conditions. We compare the performance of our method with existing SDR methods by simulation and real data analysis and show that our algorithm improves the computational efficiency and effectiveness.
This paper develops and analyzes a new algorithm for QR decomposition with column pivoting (QRCP) of rectangular matrices with large row counts. The algorithm combines methods from randomized numerical linear algebra in a particularly careful way in order to accelerate both pivot decisions for the input matrix and the process of decomposing the pivoted matrix into the QR form. The source of the latter acceleration is a use of randomized preconditioning and CholeskyQR. Comprehensive analysis is provided in both exact and finite-precision arithmetic to characterize the algorithm's rank-revealing properties and its numerical stability granted probabilistic assumptions of the sketching operator. An implementation of the proposed algorithm is described and made available inside the open-source RandLAPACK library, which itself relies on RandBLAS - also available in open-source format. Experiments with this implementation on an Intel Xeon Gold 6248R CPU demonstrate order-of-magnitude speedups relative to LAPACK's standard function for QRCP, and comparable performance to a specialized algorithm for unpivoted QR of tall matrices, which lacks the strong rank-revealing properties of the proposed method.
The classical work of (Arora et al., 1999) provides a scheme that gives, for any $\epsilon>0$, a polynomial time $1-\epsilon$ approximation algorithm for dense instances of a family of $\mathcal{NP}$-hard problems, such as Max-CUT and Max-$k$-SAT. In this paper we extend and speed up this scheme using a logarithmic number of one-bit predictions. We propose a learning augmented framework which aims at finding fast algorithms which guarantees approximation consistency, smoothness and robustness with respect to the prediction error. We provide such algorithms, which moreover use predictions parsimoniously, for dense instances of various optimization problems.
The first part of the cumulative thesis contains the numerical analysis of different $hp$-finite element discretizations related to two different weak formulations of a model problem in elastoplasticity with linearly kinematic hardening. Thereby, the weak formulation either takes the form of a variational inequality of the second kind, including a non-differentiable plasticity functional, or represents a mixed formulation, in which the non-smooth plasticity functional is resolved by a Lagrange multiplier. As the non-differentiability of the plasticity functional causes many difficulties in the numerical analysis and the computation of a discrete solution it seems advantageous to consider discretizations of the mixed formulation. In a first work, an a priori error analysis of an higher-order finite element discretization of the mixed formulation (explicitly including the discretization of the Lagrange multiplier) is presented. The relations between the three different $hp$-discretizations are studied in a second work where also a reliable a posteriori error estimator that also satisfies some (local) efficiency estimates is derived. In a third work, an efficient semi-smooth Newton solver is proposed, which is obtained by reformulating a discretization of the mixed formulation as a system of decoupled nonlinear equations. The second part of the thesis introduces a new $hp$-adaptive algorithm for solving variational equations, in which the automatic mesh refinement does not rely on the use of an a posteriori error estimator or smoothness indicators but is based on comparing locally predicted error reductions.
Many machine learning problems can be formulated as approximating a target distribution using a particle distribution by minimizing a statistical discrepancy. Wasserstein Gradient Flow can be employed to move particles along a path that minimizes the $f$-divergence between the \textit{target} and \textit{particle} distributions. To perform such movements we need to calculate the corresponding velocity fields which include a density ratio function between these two distributions. While previous works estimated the density ratio function first and then differentiated the estimated ratio, this approach may suffer from overfitting, which leads to a less accurate estimate. Inspired by non-parametric curve fitting, we directly estimate these velocity fields using interpolation. We prove that our method is asymptotically consistent under mild conditions. We validate the effectiveness using novel applications on domain adaptation and missing data imputation.
Maximizing the log-likelihood is a crucial aspect of learning latent variable models, and variational inference (VI) stands as the commonly adopted method. However, VI can encounter challenges in achieving a high log-likelihood when dealing with complicated posterior distributions. In response to this limitation, we introduce a novel variational importance sampling (VIS) approach that directly estimates and maximizes the log-likelihood. VIS leverages the optimal proposal distribution, achieved by minimizing the forward $\chi^2$ divergence, to enhance log-likelihood estimation. We apply VIS to various popular latent variable models, including mixture models, variational auto-encoders, and partially observable generalized linear models. Results demonstrate that our approach consistently outperforms state-of-the-art baselines, both in terms of log-likelihood and model parameter estimation.
We give an alternative derivation of $(N,N)$-isogenies between fastKummer surfaces which complements existing works based on the theory oftheta functions. We use this framework to produce explicit formulae for thecase of $N = 3$, and show that the resulting algorithms are more efficient thanall prior $(3, 3)$-isogeny algorithms.
Maximizing a non-negative, monontone, submodular function $f$ over $n$ elements under a cardinality constraint $k$ (SMCC) is a well-studied NP-hard problem. It has important applications in, e.g., machine learning and influence maximization. Though the theoretical problem admits polynomial-time approximation algorithms, solving it in practice often involves frequently querying submodular functions that are expensive to compute. This has motivated significant research into designing parallel approximation algorithms in the adaptive complexity model; adaptive complexity (adaptivity) measures the number of sequential rounds of $\text{poly}(n)$ function queries an algorithm requires. The state-of-the-art algorithms can achieve $(1-\frac{1}{e}-\varepsilon)$-approximate solutions with $O(\frac{1}{\varepsilon^2}\log n)$ adaptivity, which approaches the known adaptivity lower-bounds. However, the $O(\frac{1}{\varepsilon^2} \log n)$ adaptivity only applies to maximizing worst-case functions that are unlikely to appear in practice. Thus, in this paper, we consider the special class of $p$-superseparable submodular functions, which places a reasonable constraint on $f$, based on the parameter $p$, and is more amenable to maximization, while also having real-world applicability. Our main contribution is the algorithm LS+GS, a finer-grained version of the existing LS+PGB algorithm, designed for instances of SMCC when $f$ is $p$-superseparable; it achieves an expected $(1-\frac{1}{e}-\varepsilon)$-approximate solution with $O(\frac{1}{\varepsilon^2}\log(p k))$ adaptivity independent of $n$. Additionally, unrelated to $p$-superseparability, our LS+GS algorithm uses only $O(\frac{n}{\varepsilon} + \frac{\log n}{\varepsilon^2})$ oracle queries, which has an improved dependence on $\varepsilon^{-1}$ over the state-of-the-art LS+PGB; this is achieved through the design of a novel thresholding subroutine.