The primary obstacle to developing technologies for low-resource languages is the lack of representative, usable data. In this paper, we report the deployment of technology-driven data collection methods for creating a corpus of more than 60,000 translations from Hindi to Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. During this process, we help expand information access in Gondi across 2 different dimensions (a) The creation of linguistic resources that can be used by the community, such as a dictionary, children's stories, Gondi translations from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform; (b) Enabling its use in the digital domain by developing a Hindi-Gondi machine translation model, which is compressed by nearly 4 times to enable it's edge deployment on low-resource edge devices and in areas of little to no internet connectivity. We also present preliminary evaluations of utilizing the developed machine translation model to provide assistance to volunteers who are involved in collecting more data for the target language. Through these interventions, we not only created a refined and evaluated corpus of 26,240 Hindi-Gondi translations that was used for building the translation model but also engaged nearly 850 community members who can help take Gondi onto the internet.
Nowadays, many researchers are focusing their attention on the subject of machine translation (MT). However, Persian machine translation has remained unexplored despite a vast amount of research being conducted in languages with high resources, such as English. Moreover, while a substantial amount of research has been undertaken in statistical machine translation for some datasets in Persian, there is currently no standard baseline for transformer-based text2text models on each corpus. This study collected and analysed the most popular and valuable parallel corpora, which were used for Persian-English translation. Furthermore, we fine-tuned and evaluated two state-of-the-art attention-based seq2seq models on each dataset separately (48 results). We hope this paper will assist researchers in comparing their Persian to English and vice versa machine translation results to a standard baseline.
Localization is a key challenge in many robotics applications. In this work we explore LIDAR-based global localization in both urban and natural environments and develop a method suitable for online application. Our approach leverages efficient deep learning architecture capable of learning compact point cloud descriptors directly from 3D data. The method uses an efficient feature space representation of a set of segmented point clouds to match between the current scene and the prior map. We show that down-sampling in the inner layers of the network can significantly reduce computation time without sacrificing performance. We present substantial evaluation of LIDAR-based global localization methods on nine scenarios from six datasets varying between urban, park, forest, and industrial environments. Part of which includes post-processed data from 30 sequences of the Oxford RobotCar dataset, which we make publicly available. Our experiments demonstrate a factor of three reduction of computation, 70% lower memory consumption with marginal loss in localization frequency. The proposed method allows the full pipeline to run on robots with limited computation payload such as drones, quadrupeds, and UGVs as it does not require a GPU at run time.
Local search is an effective method for solving large-scale combinatorial optimization problems, and it has made remarkable progress in recent years through several subtle mechanisms. In this paper, we found two ways to improve the local search algorithms in solving Pseudo-Boolean Optimization(PBO): Firstly, some of those mechanisms such as unit propagation are merely used in solving MaxSAT before, which can be generalized to solve PBO as well; Secondly, the existing local search algorithms utilize the heuristic on variables, so-called score, to mainly guide the search. We attempt to gain more insights into the clause, as it plays the role of a middleman who builds a bridge between variables and the given formula. Hence, we first extended the combination of unit propagation-based decimation algorithm to PBO problem, giving a further generalized definition of unit clause for PBO problem, and apply it to the existing solver LS-PBO for constructing an initial assignment; then, we introduced a new heuristic on clauses, dubbed care, to set a higher priority for the clauses that are less satisfied in current iterations. Experiments on three real-world application benchmarks including minimum-width confidence band, wireless sensor network optimization, and seating arrangement problems show that our algorithm DeciLS-PBO has a promising performance compared to the state-of-the-art algorithms.
As AI technologies are rolled out into healthcare, academia, human resources, law, and a multitude of other domains, they become de-facto arbiters of truth. But truth is highly contested, with many different definitions and approaches. This article discusses the struggle for truth in AI systems and the general responses to date. It then investigates the production of truth in InstructGPT, a large language model, highlighting how data harvesting, model architectures, and social feedback mechanisms weave together disparate understandings of veracity. It conceptualizes this performance as an operationalization of truth, where distinct, often conflicting claims are smoothly synthesized and confidently presented into truth-statements. We argue that these same logics and inconsistencies play out in Instruct's successor, ChatGPT, reiterating truth as a non-trivial problem. We suggest that enriching sociality and thickening "reality" are two promising vectors for enhancing the truth-evaluating capacities of future language models. We conclude, however, by stepping back to consider AI truth-telling as a social practice: what kind of "truth" do we as listeners desire?
When acquiring syntax, children consistently choose hierarchical rules over competing non-hierarchical possibilities. Is this preference due to a learning bias for hierarchical structure, or due to more general biases that interact with hierarchical cues in children's linguistic input? We explore these possibilities by training LSTMs and Transformers - two types of neural networks without a hierarchical bias - on data similar in quantity and content to children's linguistic input: text from the CHILDES corpus. We then evaluate what these models have learned about English yes/no questions, a phenomenon for which hierarchical structure is crucial. We find that, though they perform well at capturing the surface statistics of child-directed speech (as measured by perplexity), both model types generalize in a way more consistent with an incorrect linear rule than the correct hierarchical rule. These results suggest that human-like generalization from text alone requires stronger biases than the general sequence-processing biases of standard neural network architectures.
Learning analytics have been argued as a key enabler to improving student learning at scale. Yet, despite considerable efforts by the learning analytics community across the world over the past decade, the evidence to support that claim is hitherto scarce, as is the demand from educators to adopt it into their practice. We introduce the concept of practicable learning analytics to illuminate what learning analytics may look like from the perspective of practice, and how this practice can be incorporated in learning analytics designs so as to make them more attractive for practitioners. As a framework for systematic analysis of the practice in which learning analytics tools and methods are to be employed, we use the concept of Information Systems Artifact (ISA) which comprises three interrelated subsystems: the informational, the social and the technological artefacts. The ISA approach entails systemic thinking which is necessary for discussing data-driven decision making in the context of educational systems, practices, and situations. The ten chapters in this book are presented and reflected upon from the ISA perspective, clarifying that detailed attention to the social artefact is critical to the design of practicable learning analytics.
In this paper, we aimed to help bridge the gap between human fluid intelligence - the ability to solve novel tasks without prior training - and the performance of deep neural networks, which typically require extensive prior training. An essential cognitive component for solving intelligence tests, which in humans are used to measure fluid intelligence, is the ability to identify regularities in sequences. This motivated us to construct a benchmark task, which we term \textit{sequence consistency evaluation} (SCE), whose solution requires the ability to identify regularities in sequences. Given the proven capabilities of deep networks, their ability to solve such tasks after extensive training is expected. Surprisingly, however, we show that naive (randomly initialized) deep learning models that are trained on a \textit{single} SCE with a \textit{single} optimization step can still solve non-trivial versions of the task relatively well. We extend our findings to solve, without any prior training, real-world anomaly detection tasks in the visual and auditory modalities. These results demonstrate the fluid-intelligent computational capabilities of deep networks. We discuss the implications of our work for constructing fluid-intelligent machines.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.