亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The goal of survey design is often to minimize the errors associated with inference: the total of bias and variance. Random surveys are common because they allow the use of theoretically unbiased estimators. In practice however, such design-based approaches are often unable to account for logistical or budgetary constraints. Thus, they may result in samples that are logistically inefficient, or infeasible to implement. Various balancing and optimal sampling techniques have been proposed to improve the statistical efficiency of such designs, but few models have attempted to explicitly incorporate logistical and financial constraints. We introduce a mixed integer linear program (MILP) for optimal sampling design, capable of capturing a variety of constraints and a wide class of Bayesian regression models. We demonstrate the use of our model on three spatial sampling problems of increasing complexity, including the real logistics of the US Forest Service Forest Inventory and Analysis survey of Tanana, Alaska. Our methodological contribution to survey design is significant because the proposed modeling framework makes it possible to generate high-quality sampling designs and inferences while satisfying practical constraints defined by the user. The technical novelty of the method is the explicit integration of Bayesian statistical models in combinatorial optimization. This integration might allow a paradigm shift in spatial sampling under constrained budgets or logistics.

相關內容

The logistics industry in Japan is facing a severe shortage of labor. Therefore, there is an increasing need for joint transportation allowing large amounts of cargo to be transported using fewer trucks. In recent years, the use of artificial intelligence and other new technologies has gained wide attention for improving matching efficiency. However, it is difficult to develop a system that can instantly respond to requests because browsing through enormous combinations of two transport lanes is time consuming. In this study, we focus on a form of joint transportation called triangular transportation and enumerate the combinations with high cooperation effects. The proposed algorithm makes good use of hidden inequalities, such as the distance axiom, to narrow down the search range without sacrificing accuracy. Numerical experiments show that the proposed algorithm is thousands of times faster than simple brute force. With this technology as the core engine, we developed a joint transportation matching system. The system has already been in use by over 150 companies as of October 2022, and was featured in a collection of logistics digital transformation cases published by Japan's Ministry of Land, Infrastructure, Transport and Tourism.

Recent work has shown potential in using Mixed Integer Programming (MIP) solvers to optimize certain aspects of neural networks (NNs). However the intriguing approach of training NNs with MIP solvers is under-explored. State-of-the-art-methods to train NNs are typically gradient-based and require significant data, computation on GPUs, and extensive hyper-parameter tuning. In contrast, training with MIP solvers does not require GPUs or heavy hyper-parameter tuning, but currently cannot handle anything but small amounts of data. This article builds on recent advances that train binarized NNs using MIP solvers. We go beyond current work by formulating new MIP models which improve training efficiency and which can train the important class of integer-valued neural networks (INNs). We provide two novel methods to further the potential significance of using MIP to train NNs. The first method optimizes the number of neurons in the NN while training. This reduces the need for deciding on network architecture before training. The second method addresses the amount of training data which MIP can feasibly handle: we provide a batch training method that dramatically increases the amount of data that MIP solvers can use to train. We thus provide a promising step towards using much more data than before when training NNs using MIP models. Experimental results on two real-world data-limited datasets demonstrate that our approach strongly outperforms the previous state of the art in training NN with MIP, in terms of accuracy, training time and amount of data. Our methodology is proficient at training NNs when minimal training data is available, and at training with minimal memory requirements -- which is potentially valuable for deploying to low-memory devices.

The Age of Incorrect Information (AoII) is a recently proposed metric for real-time remote monitoring systems. In particular, AoII measures the time the information at the monitor is incorrect, weighted by the magnitude of this incorrectness, thereby combining the notions of freshness and distortion. This paper addresses the definition of an AoII-optimal transmission policy in a discrete-time communication scheme with a resource constraint and a hybrid automatic repeat request (HARQ) protocol. Considering an $N$-ary symmetric Markov source, the problem is formulated as an infinite-horizon average-cost constrained Markov decision process (CMDP). The source model is characterized by the cardinality of the state space and the probability of staying at the same state. Interestingly, it is proved that under some conditions, the optimal transmission policy is to never transmit. This reveals that there exists a region of the source dynamics where communication is inadequate in reducing the AoII. Elsewhere, there exists an optimal transmission policy, which is a randomized mixture of two discrete threshold-based policies that randomize at one state. The optimal threshold and the randomization component are derived analytically. Numerical results illustrate the impact of source dynamics, channel conditions, and the resource constraint on the average AoII.

Without writing a single line of code by a human, an example Monte Carlo simulation based application for stochastic dependence modeling with copulas is developed using a state-of-the-art large language model (LLM) fine-tuned for conversations. This includes interaction with ChatGPT in natural language and using mathematical formalism, which, under careful supervision by a human-expert, led to producing a working code in MATLAB, Python and R for sampling from a given copula model, evaluation of the model's density, performing maximum likelihood estimation, optimizing the code for parallel computing for CPUs as well as for GPUs, and visualization of the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human-expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a solution that is correct. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.

As control engineering methods are applied to increasingly complex systems, data-driven approaches for system identification appear as a promising alternative to physics-based modeling. While many of these approaches rely on the availability of state measurements, the states of a complex system are often not directly measurable. It may then be necessary to jointly estimate the dynamics and a latent state, making it considerably more challenging to design controllers with performance guarantees. This paper proposes a novel method for the computation of an optimal input trajectory for unknown nonlinear systems with latent states. Probabilistic performance guarantees are derived for the resulting input trajectory, and an approach to validate the performance of arbitrary control laws is presented. The effectiveness of the proposed method is demonstrated in a numerical simulation.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司