In 21st century America, to many observers, the idea that 10's of millions of Americans could lose power and heat for multiple days in the middle of a record cold snap, was unthinkable. It came as an even greater surprise that it would be Texas - arguably one of the world's energy capitals - that failed to provide sufficient power to its residents. This paper explores the events that led to the outage, the experiences of those who lived through it, and the situation in Texas one to two months after the event. We have taken an ethnographic approach to capture both the empirical aspects of the situation, and the more interpretive descriptions of the accounts and thoughts of the participants. We believe this ethnography of events in Texas can serve as foundational evidence and therefore can be generalized to a wide variety of situations and methodologies.
Service Level Agreements (SLA) are employed to ensure the performance of Cloud solutions. When a component fails, the importance of logs increases significantly. All departments may turn to logs to determine the cause of the issue and find the party at fault. The party at fault may be motivated to tamper with the logs to hide their role. We argue that the critical nature of Cloud logs calls for immutability and verification mechanism without the presence of a single trusted party. This paper proposes such a mechanism by describing a blockchain-based log storage system, called Logchain, which can be integrated with existing private and public blockchain solutions. Logchain uses the immutability feature of blockchain to provide a tamper-resistance platform for log storage. Additionally, we propose a hierarchical structure to address blockchains' scalability issues. To validate the mechanism, we integrate Logchain into Ethereum and IBM Blockchain. We show that the solution is scalable and perform the analysis of the cost of ownership to help a reader select an implementation that would address their needs. The Logchain's scalability improvement on a blockchain is achieved without any alteration of blockchains' fundamental architecture. As shown in this work, it can function on private and public blockchains and, therefore, can be a suitable alternative for organizations that need a secure, immutable log storage platform.
The landscape of workflow systems for scientific applications is notoriously convoluted with hundreds of seemingly equivalent workflow systems, many isolated research claims, and a steep learning curve. To address some of these challenges and lay the groundwork for transforming workflows research and development, the WorkflowsRI and ExaWorks projects partnered to bring the international workflows community together. This paper reports on discussions and findings from two virtual "Workflows Community Summits" (January and April, 2021). The overarching goals of these workshops were to develop a view of the state of the art, identify crucial research challenges in the workflows community, articulate a vision for potential community efforts, and discuss technical approaches for realizing this vision. To this end, participants identified six broad themes: FAIR computational workflows; AI workflows; exascale challenges; APIs, interoperability, reuse, and standards; training and education; and building a workflows community. We summarize discussions and recommendations for each of these themes.
Technological advances in information sharing have raised concerns about data protection. Privacy policies contain privacy-related requirements about how the personal data of individuals will be handled by an organization or a software system (e.g., a web service or an app). In Europe, privacy policies are subject to compliance with the General Data Protection Regulation (GDPR). A prerequisite for GDPR compliance checking is to verify whether the content of a privacy policy is complete according to the provisions of GDPR. Incomplete privacy policies might result in large fines on violating organization as well as incomplete privacy-related software specifications. Manual completeness checking is both time-consuming and error-prone. In this paper, we propose AI-based automation for the completeness checking of privacy policies. Through systematic qualitative methods, we first build two artifacts to characterize the privacy-related provisions of GDPR, namely a conceptual model and a set of completeness criteria. Then, we develop an automated solution on top of these artifacts by leveraging a combination of natural language processing and supervised machine learning. Specifically, we identify the GDPR-relevant information content in privacy policies and subsequently check them against the completeness criteria. To evaluate our approach, we collected 234 real privacy policies from the fund industry. Over a set of 48 unseen privacy policies, our approach detected 300 of the total of 334 violations of some completeness criteria correctly, while producing 23 false positives. The approach thus has a precision of 92.9% and recall of 89.8%. Compared to a baseline that applies keyword search only, our approach results in an improvement of 24.5% in precision and 38% in recall.
In the 21st century, the industry of drones, also known as Unmanned Aerial Vehicles (UAVs), has witnessed a rapid increase with its large number of airspace users. The tremendous benefits of this technology in civilian applications such as hostage rescue and parcel delivery will integrate smart cities in the future. Nowadays, the affordability of commercial drones expands its usage at a large scale. However, the development of drone technology is associated with vulnerabilities and threats due to the lack of efficient security implementations. Moreover, the complexity of UAVs in software and hardware triggers potential security and privacy issues. Thus, posing significant challenges for the industry, academia, and governments. In this paper, we extensively survey the security and privacy issues of UAVs by providing a systematic classification at four levels: Hardware-level, Software-level, Communication-level, and Sensor-level. In particular, for each level, we thoroughly investigate (1) common vulnerabilities affecting UAVs for potential attacks from malicious actors, (2) existing threats that are jeopardizing the civilian application of UAVs, (3) active and passive attacks performed by the adversaries to compromise the security and privacy of UAVs, (4) possible countermeasures and mitigation techniques to protect UAVs from such malicious activities. In addition, we summarize the takeaways that highlight lessons learned about UAVs' security and privacy issues. Finally, we conclude our survey by presenting the critical pitfalls and suggesting promising future research directions for security and privacy of UAVs.
Recently, the wireless community has initiated research on the sixth generation (6G) cellular network for the next decade. The 6G visions are still under development but are converging toward ubiquitous, sustainable, and automated digital society. A network-in-a-box (NIB) is a portable and fully-fledged networking solution that has many potentials to stimulate 6G visions, especially for ubiquitous and resilient network connectivity. In this article, we highlight how NIB features suit 6G use cases and requirements and how it can be used for 6G communications. In addition, we discuss the challenges of the potential enabling technologies of 6G that can reinforce the NIB performance.
The use of large arrays might be the solution to the capacity problems in wireless communications. The signal-to-noise ratio (SNR) grows linearly with the number of array elements $N$ when using Massive MIMO receivers and half-duplex relays. Moreover, intelligent reflecting surfaces (IRSs) have recently attracted attention since these can relay signals to achieve an SNR that grows as $N^2$, which seems like a major benefit. In this paper, we use a deterministic propagation model for a planar array of arbitrary size, to demonstrate that the mentioned SNR behaviors, and associated power scaling laws, only apply in the far-field. They cannot be used to study the regime where $N\to\infty$. We derive an exact channel gain expression that captures three essential near-field behaviors and use it to revisit the power scaling laws. We derive new finite asymptotic SNR limits but also conclude that these are unlikely to be approached in practice. We further prove that an IRS-aided setup cannot achieve a higher SNR than an equal-sized Massive MIMO setup, despite its faster SNR growth. We quantify analytically how much larger the IRS must be to achieve the same SNR. Finally, we show that an optimized IRS does not behave as an "anomalous" mirror but can vastly outperform that benchmark.
In Internet of Things (IoT), the freshness of status updates is crucial for mission-critical applications. In this regard, it is suggested to quantify the freshness of updates by using Age of Information (AoI) from the receiver's perspective. Specifically, the AoI measures the freshness over time. However, the freshness in the content is neglected. In this paper, we introduce an age-based utility, named as Age of Changed Information (AoCI), which captures both the passage of time and the change of information content. By modeling the underlying physical process as a discrete time Markov chain, we investigate the AoCI in a time-slotted status update system, where a sensor samples the physical process and transmits the update packets to the destination. With the aim of minimizing the weighted sum of the AoCI and the update cost, we formulate an infinite horizon average cost Markov Decision Process. We show that the optimal updating policy has a special structure with respect to the AoCI and identify the condition under which the special structure exists. By exploiting the special structure, we provide a low complexity relative policy iteration algorithm that finds the optimal updating policy. We further investigate the optimal policy for two special cases. In the first case where the state of the physical process transits with equiprobability, we show that optimal policy is of threshold type and derive the closed-form of the optimal threshold. We then study a more generalized periodic Markov model of the physical process in the second case. Lastly, simulation results are laid out to exhibit the performance of the optimal updating policy and its superiority over the zero-wait baseline policy.
With the ubiquitous nature of information technology solutions that facilitate communication in the modern world, cyber attacks are increasing in volume and becoming more sophisticated in nature. From classic network-based Denial of Service (DoS) attacks to the more recent concerns of privacy compromises, Intrusion Detection Systems (IDS) are becoming an urgent need to safeguard the modern information technology landscape. The development of these IDS relies on training and evaluation datasets that must evolve with time and represent the contemporary threat landscape. The purpose of this analysis is to explore such recent datasets, describe how they enable research endeavours and the development of novel IDS. Specifically, 7 recent datasets published for IDS research have been reviewed along with selected publications that have employed them. In doing so, the discussion emphasizes the need for the publication of even more modern datasets, especially for emerging technologies such as the Internet of Things (IoT) and smartphone devices, to ensure that modern networks and communication channels are secured. Furthermore, a taxonomy based on the discussed datasets has been developed that can be used to inform the dataset selection process for future research endeavours.
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.