Technological advances in information sharing have raised concerns about data protection. Privacy policies contain privacy-related requirements about how the personal data of individuals will be handled by an organization or a software system (e.g., a web service or an app). In Europe, privacy policies are subject to compliance with the General Data Protection Regulation (GDPR). A prerequisite for GDPR compliance checking is to verify whether the content of a privacy policy is complete according to the provisions of GDPR. Incomplete privacy policies might result in large fines on violating organization as well as incomplete privacy-related software specifications. Manual completeness checking is both time-consuming and error-prone. In this paper, we propose AI-based automation for the completeness checking of privacy policies. Through systematic qualitative methods, we first build two artifacts to characterize the privacy-related provisions of GDPR, namely a conceptual model and a set of completeness criteria. Then, we develop an automated solution on top of these artifacts by leveraging a combination of natural language processing and supervised machine learning. Specifically, we identify the GDPR-relevant information content in privacy policies and subsequently check them against the completeness criteria. To evaluate our approach, we collected 234 real privacy policies from the fund industry. Over a set of 48 unseen privacy policies, our approach detected 300 of the total of 334 violations of some completeness criteria correctly, while producing 23 false positives. The approach thus has a precision of 92.9% and recall of 89.8%. Compared to a baseline that applies keyword search only, our approach results in an improvement of 24.5% in precision and 38% in recall.
We consider pessimistic bilevel stochastic programs in which the follower maximizes over a fixed compact convex set a strictly convex quadratic function, whose Hessian depends on the leader's decision. The resulting random variable is evaluated by a convex risk measure. Under assumptions including real analyticity of the lower-level goal function, we prove existence of optimal solutions. We discuss an alternate model where the leader hedges against optimal lower-level solutions, and show that in this case solvability can be guaranteed under weaker conditions both in a deterministic and in a stochastic setting. The approach is applied to a mechanical shape optimization problem in which the leader decides on an optimal material distribution to minimize a tracking-type cost functional, whereas the follower chooses forces from an admissible set to maximize a compliance objective. The material distribution is considered to be stochastically perturbed in the actual construction phase. Computational results illustrate the bilevel optimization concept and demonstrate the interplay of follower and leader in shape design and testing.
Given programming languages can provide different types and levels of security support, it is critically important to consider security aspects while selecting programming languages for developing software systems. Inadequate consideration of security in the choice of a programming language may lead to potential ramifications for secure development. Whilst theoretical analysis of the supposed security properties of different programming languages has been conducted, there has been relatively little effort to empirically explore the actual security challenges experienced by developers. We have performed a large-scale study of the security challenges of 15 programming languages by quantitatively and qualitatively analysing the developers' discussions from Stack Overflow and GitHub. By leveraging topic modelling, we have derived a taxonomy of 18 major security challenges for 6 topic categories. We have also conducted comparative analysis to understand how the identified challenges vary regarding the different programming languages and data sources. Our findings suggest that the challenges and their characteristics differ substantially for different programming languages and data sources, i.e., Stack Overflow and GitHub. The findings provide evidence-based insights and understanding of security challenges related to different programming languages to software professionals (i.e., practitioners or researchers). The reported taxonomy of security challenges can assist both practitioners and researchers in better understanding and traversing the secure development landscape. This study highlights the importance of the choice of technology, e.g., programming language, in secure software engineering. Hence, the findings are expected to motivate practitioners to consider the potential impact of the choice of programming languages on software security.
Data protection law, including the General Data Protection Regulation (GDPR), usually requires a privacy policy before data can be collected from individuals. We analysed 15,145 privacy policies from 26,910 mobile apps in May 2019 (about one year after the GDPR came into force), finding that only opening the policy webpages shares data with third-parties for 48.5% of policies, potentially violating the GDPR. We compare this data sharing across countries, payment models (free, in-app-purchases, paid) and platforms (Google Play Store, Apple App Store). We further contacted 52 developers of apps, which did not provide a privacy policy, and asked them about their data practices. Despite being legally required to answer such queries, 12 developers (23%) failed to respond.
Modern information and communication technology practices present novel threats to privacy. We focus on some shortcomings in current data protection regulation's ability to adequately address the ramifications of AI-driven data processing practices, in particular those of combining data sets. We propose that privacy regulation relies less on individuals' privacy expectations and recommend regulatory reform in two directions: (1) abolishing the distinction between personal and anonymized data for the purposes of triggering the application of data protection laws and (2) developing methods to prioritize regulatory intervention based on the level of privacy risk posed by individual data processing actions. This is an interdisciplinary paper that intends to build a bridge between the various communities involved in privacy research. We put special emphasis on linking technical notions with their regulatory implications and introducing the relevant technical and legal terminology in use to foster more efficient coordination between the policymaking and technical communities and enable a timely solution of the problems raised.
In recent years, there is growing interest in the ways the European aviation industry can leverage the multi-source data fusion towards augmented domain intelligence. However, privacy, legal and organisational policies together with technical limitations, hinder data sharing and, thus, its benefits. The current paper presents the ICARUS data policy and assets brokerage framework, which aims to (a) formalise the data attributes and qualities that affect how aviation data assets can be shared and handled subsequently to their acquisition, including licenses, IPR, characterisation of sensitivity and privacy risks, and (b) enable the creation of machine-processable data contracts for the aviation industry. This involves expressing contractual terms pertaining to data trading agreements into a machine-processable language and supporting the diverse interactions among stakeholders in aviation data sharing scenarios through a trusted and robust system based on the Ethereum platform.
Smart Meters (SMs) are able to share the power consumption of users with utility providers almost in real-time. These fine-grained signals carry sensitive information about users, which has raised serious concerns from the privacy viewpoint. In this paper, we focus on real-time privacy threats, i.e., potential attackers that try to infer sensitive information from SMs data in an online fashion. We adopt an information-theoretic privacy measure and show that it effectively limits the performance of any attacker. Then, we propose a general formulation to design a privatization mechanism that can provide a target level of privacy by adding a minimal amount of distortion to the SMs measurements. On the other hand, to cope with different applications, a flexible distortion measure is considered. This formulation leads to a general loss function, which is optimized using a deep learning adversarial framework, where two neural networks -- referred to as the releaser and the adversary -- are trained with opposite goals. An exhaustive empirical study is then performed to validate the performance of the proposed approach and compare it with state-of-the-art methods for the occupancy detection privacy problem. Finally, we also investigate the impact of data mismatch between the releaser and the attacker.
We present an overview on Temporal Logic Programming under the perspective of its application for Knowledge Representation and declarative problem solving. Such programs are the result of combining usual rules with temporal modal operators, as in Linear-time Temporal Logic (LTL). We focus on recent results of the non-monotonic formalism called Temporal Equilibrium Logic (TEL) that is defined for the full syntax of LTL, but performs a model selection criterion based on Equilibrium Logic, a well known logical characterization of Answer Set Programming (ASP). We obtain a proper extension of the stable models semantics for the general case of arbitrary temporal formulas. We recall the basic definitions for TEL and its monotonic basis, the temporal logic of Here-and-There (THT), and study the differences between infinite and finite traces. We also provide other useful results, such as the translation into other formalisms like Quantified Equilibrium Logic or Second-order LTL, and some techniques for computing temporal stable models based on automata. In a second part, we focus on practical aspects, defining a syntactic fragment called temporal logic programs closer to ASP, and explain how this has been exploited in the construction of the solver TELINGO.
Many video classification applications require access to personal data, thereby posing an invasive security risk to the users' privacy. We propose a privacy-preserving implementation of single-frame method based video classification with convolutional neural networks that allows a party to infer a label from a video without necessitating the video owner to disclose their video to other entities in an unencrypted manner. Similarly, our approach removes the requirement of the classifier owner from revealing their model parameters to outside entities in plaintext. To this end, we combine existing Secure Multi-Party Computation (MPC) protocols for private image classification with our novel MPC protocols for oblivious single-frame selection and secure label aggregation across frames. The result is an end-to-end privacy-preserving video classification pipeline. We evaluate our proposed solution in an application for private human emotion recognition. Our results across a variety of security settings, spanning honest and dishonest majority configurations of the computing parties, and for both passive and active adversaries, demonstrate that videos can be classified with state-of-the-art accuracy, and without leaking sensitive user information.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.