The great success neural networks have achieved is inseparable from the application of gradient-descent (GD) algorithms. Based on GD, many variant algorithms have emerged to improve the GD optimization process. The gradient for back-propagation is apparently the most crucial aspect for the training of a neural network. The quality of the calculated gradient can be affected by multiple aspects, e.g., noisy data, calculation error, algorithm limitation, and so on. To reveal gradient information beyond gradient descent, we introduce a framework (\textbf{GCGD}) to perform gradient correction. GCGD consists of two plug-in modules: 1) inspired by the idea of gradient prediction, we propose a \textbf{GC-W} module for weight gradient correction; 2) based on Neural ODE, we propose a \textbf{GC-ODE} module for hidden states gradient correction. Experiment results show that our gradient correction framework can effectively improve the gradient quality to reduce training epochs by $\sim$ 20\% and also improve the network performance.
This work establishes provably faster convergence rates for gradient descent via a computer-assisted analysis technique. Our theory allows nonconstant stepsize policies with frequent long steps potentially violating descent by analyzing the overall effect of many iterations at once rather than the typical one-iteration inductions used in most first-order method analyses. We show that long steps, which may increase the objective value in the short term, lead to provably faster convergence in the long term. A conjecture towards proving a faster $O(1/T\log T)$ rate for gradient descent is also motivated along with simple numerical validation.
Subgradient methods are the natural extension to the non-smooth case of the classical gradient descent for regular convex optimization problems. However, in general, they are characterized by slow convergence rates, and they require decreasing step-sizes to converge. In this paper we propose a subgradient method with constant step-size for composite convex objectives with $\ell_1$-regularization. If the smooth term is strongly convex, we can establish a linear convergence result for the function values. This fact relies on an accurate choice of the element of the subdifferential used for the update, and on proper actions adopted when non-differentiability regions are crossed. Then, we propose an accelerated version of the algorithm, based on conservative inertial dynamics and on an adaptive restart strategy, that is guaranteed to achieve a linear convergence rate in the strongly convex case. Finally, we test the performances of our algorithms on some strongly and non-strongly convex examples.
We consider gradient-related methods for low-rank matrix optimization with a smooth cost function. The methods operate on single factors of the low-rank factorization and share aspects of both alternating and Riemannian optimization. Two possible choices for the search directions based on Gauss-Southwell type selection rules are compared: one using the gradient of a factorized non-convex formulation, the other using the Riemannian gradient. While both methods provide gradient convergence guarantees that are similar to the unconstrained case, numerical experiments on a quadratic cost function indicate that the version based on the Riemannian gradient is significantly more robust with respect to small singular values and the condition number of the cost function. As a side result of our approach, we also obtain new convergence results for the alternating least squares method.
Stochastic Approximation (SA) is a classical algorithm that has had since the early days a huge impact on signal processing, and nowadays on machine learning, due to the necessity to deal with a large amount of data observed with uncertainties. An exemplar special case of SA pertains to the popular stochastic (sub)gradient algorithm which is the working horse behind many important applications. A lesser-known fact is that the SA scheme also extends to non-stochastic-gradient algorithms such as compressed stochastic gradient, stochastic expectation-maximization, and a number of reinforcement learning algorithms. The aim of this article is to overview and introduce the non-stochastic-gradient perspectives of SA to the signal processing and machine learning audiences through presenting a design guideline of SA algorithms backed by theories. Our central theme is to propose a general framework that unifies existing theories of SA, including its non-asymptotic and asymptotic convergence results, and demonstrate their applications on popular non-stochastic-gradient algorithms. We build our analysis framework based on classes of Lyapunov functions that satisfy a variety of mild conditions. We draw connections between non-stochastic-gradient algorithms and scenarios when the Lyapunov function is smooth, convex, or strongly convex. Using the said framework, we illustrate the convergence properties of the non-stochastic-gradient algorithms using concrete examples. Extensions to the emerging variance reduction techniques for improved sample complexity will also be discussed.
Addressing the interpretability problem of NMF on Boolean data, Boolean Matrix Factorization (BMF) uses Boolean algebra to decompose the input into low-rank Boolean factor matrices. These matrices are highly interpretable and very useful in practice, but they come at the high computational cost of solving an NP-hard combinatorial optimization problem. To reduce the computational burden, we propose to relax BMF continuously using a novel elastic-binary regularizer, from which we derive a proximal gradient algorithm. Through an extensive set of experiments, we demonstrate that our method works well in practice: On synthetic data, we show that it converges quickly, recovers the ground truth precisely, and estimates the simulated rank exactly. On real-world data, we improve upon the state of the art in recall, loss, and runtime, and a case study from the medical domain confirms that our results are easily interpretable and semantically meaningful.
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection. This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy. In this paper, we focus on the privacy and utility (measured by excess risk bounds) performances of differentially private stochastic gradient descent (SGD) algorithms in the setting of stochastic convex optimization. Specifically, we examine the pointwise problem in the low-noise setting for which we derive sharper excess risk bounds for the differentially private SGD algorithm. In the pairwise learning setting, we propose a simple differentially private SGD algorithm based on gradient perturbation. Furthermore, we develop novel utility bounds for the proposed algorithm, proving that it achieves optimal excess risk rates even for non-smooth losses. Notably, we establish fast learning rates for privacy-preserving pairwise learning under the low-noise condition, which is the first of its kind.
Stochastic Gradient Descent (SGD) is one of the simplest and most popular algorithms in modern statistical and machine learning due to its computational and memory efficiency. Various averaging schemes have been proposed to accelerate the convergence of SGD in different settings. In this paper, we explore a general averaging scheme for SGD. Specifically, we establish the asymptotic normality of a broad range of weighted averaged SGD solutions and provide asymptotically valid online inference approaches. Furthermore, we propose an adaptive averaging scheme that exhibits both optimal statistical rate and favorable non-asymptotic convergence, drawing insights from the optimal weight for the linear model in terms of non-asymptotic mean squared error (MSE).
The performance of data fusion and tracking algorithms often depends on parameters that not only describe the sensor system, but can also be task-specific. While for the sensor system tuning these variables is time-consuming and mostly requires expert knowledge, intrinsic parameters of targets under track can even be completely unobservable until the system is deployed. With state-of-the-art sensor systems growing more and more complex, the number of parameters naturally increases, necessitating the automatic optimization of the model variables. In this paper, the parameters of an interacting multiple model (IMM) filter are optimized solely using measurements, thus without necessity for any ground-truth data. The resulting method is evaluated through an ablation study on simulated data, where the trained model manages to match the performance of a filter parametrized with ground-truth values.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.