亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dairy farming can be an energy intensive form of farming. Understanding the factors affecting electricity consumption on dairy farms is crucial for farm owners and energy providers. In order to accurately estimate electricity demands in dairy farms, it is necessary to develop a model. In this research paper, an agent-based model is proposed to model the electricity consumption of Irish dairy farms. The model takes into account various factors that affect the energy consumption of dairy farms, including herd size, number of milking machines, and time of year. The outputs are validated using existing state-of-the-art dairy farm modelling frameworks. The proposed agent-based model is fully explainable, which is an advantage over other Artificial Intelligence techniques, e.g. deep learning.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 穩健性 · Machine Learning · 極大 · Learning ·
2023 年 10 月 6 日

Assistive devices, such as exoskeletons and prostheses, have revolutionized the field of rehabilitation and mobility assistance. Efficiently detecting transitions between different activities, such as walking, stair ascending and descending, and sitting, is crucial for ensuring adaptive control and enhancing user experience. We here present an approach for real-time transition detection, aimed at optimizing the processing-time performance. By establishing activity-specific threshold values through trained machine learning models, we effectively distinguish motion patterns and we identify transition moments between locomotion modes. This threshold-based method improves real-time embedded processing time performance by up to 11 times compared to machine learning approaches. The efficacy of the developed finite-state machine is validated using data collected from three different measurement systems. Moreover, experiments with healthy participants were conducted on an active pelvis orthosis to validate the robustness and reliability of our approach. The proposed algorithm achieved high accuracy in detecting transitions between activities. These promising results show the robustness and reliability of the method, reinforcing its potential for integration into practical applications.

Intelligent reflecting surfaces (IRSs) are a promising low-cost solution for achieving high spectral and energy efficiency in future communication systems by enabling the customization of wireless propagation environments. Despite the plethora of research on resource allocation design for IRS-assisted multiuser communication systems, the optimal design and the corresponding performance upper bound are still not fully understood. To bridge this gap in knowledge, in this paper, we investigate the optimal resource allocation design for IRS-assisted multiuser systems employing practical discrete IRS phase shifters. In particular, we jointly optimize the beamforming vector at the base station (BS) and the discrete IRS phase shifts to minimize the total transmit power for the cases of perfect and imperfect channel state information (CSI) knowledge. To this end, two novel algorithms based on the generalized Benders decomposition (GBD) method are developed to obtain the globally optimal solution for perfect and imperfect CSI, respectively. Moreover, to facilitate practical implementation, we propose two corresponding low-complexity suboptimal algorithms with guaranteed convergence by capitalizing on successive convex approximation (SCA). In particular, for imperfect CSI, we adopt a bounded error model to characterize the CSI uncertainty and propose a new transformation to convexify the robust quality-of-service (QoS) constraints. Our numerical results confirm the optimality of the proposed GBD-based algorithms for the considered system for both perfect and imperfect CSI. Furthermore, we unveil that both proposed SCA-based algorithms can achieve a close-to-optimal performance within a few iterations. Moreover, compared with the state-of-the-art solution based on the alternating optimization (AO) method, the proposed SCA-based scheme achieves a significant performance gain with low complexity.

In copula models the marginal distributions and copula function are specified separately. We treat these as two modules in a modular Bayesian inference framework, and propose conducting modified Bayesian inference by ``cutting feedback''. Cutting feedback limits the influence of potentially misspecified modules in posterior inference. We consider two types of cuts. The first limits the influence of a misspecified copula on inference for the marginals, which is a Bayesian analogue of the popular Inference for Margins (IFM) estimator. The second limits the influence of misspecified marginals on inference for the copula parameters by using a rank likelihood to define the cut model. We establish that if only one of the modules is misspecified, then the appropriate cut posterior gives accurate uncertainty quantification asymptotically for the parameters in the other module. Computation of the cut posteriors is difficult, and new variational inference methods to do so are proposed. The efficacy of the new methodology is demonstrated using both simulated data and a substantive multivariate time series application from macroeconomic forecasting. In the latter, cutting feedback from misspecified marginals to a 1096 dimension copula improves posterior inference and predictive accuracy greatly, compared to conventional Bayesian inference.

Energy justice is a growing area of interest in interdisciplinary energy research. However, identifying systematic biases in the energy sector remains challenging due to confounding variables, intricate heterogeneity in treatment effects, and limited data availability. To address these challenges, we introduce a novel approach for counterfactual causal analysis centered on energy justice. We use subgroup analysis to manage diverse factors and leverage the idea of transfer learning to mitigate data scarcity in each subgroup. In our numerical analysis, we apply our method to a large-scale customer-level power outage data set and investigate the counterfactual effect of demographic factors, such as income and age of the population, on power outage durations. Our results indicate that low-income and elderly-populated areas consistently experience longer power outages, regardless of weather conditions. This points to existing biases in the power system and highlights the need for focused improvements in areas with economic challenges.

Latent space Energy-Based Models (EBMs), also known as energy-based priors, have drawn growing interests in the field of generative modeling due to its flexibility in the formulation and strong modeling power of the latent space. However, the common practice of learning latent space EBMs with non-convergent short-run MCMC for prior and posterior sampling is hindering the model from further progress; the degenerate MCMC sampling quality in practice often leads to degraded generation quality and instability in training, especially with highly multi-modal and/or high-dimensional target distributions. To remedy this sampling issue, in this paper we introduce a simple but effective diffusion-based amortization method for long-run MCMC sampling and develop a novel learning algorithm for the latent space EBM based on it. We provide theoretical evidence that the learned amortization of MCMC is a valid long-run MCMC sampler. Experiments on several image modeling benchmark datasets demonstrate the superior performance of our method compared with strong counterparts

Latent space Energy-Based Models (EBMs), also known as energy-based priors, have drawn growing interests in generative modeling. Fueled by its flexibility in the formulation and strong modeling power of the latent space, recent works built upon it have made interesting attempts aiming at the interpretability of text modeling. However, latent space EBMs also inherit some flaws from EBMs in data space; the degenerate MCMC sampling quality in practice can lead to poor generation quality and instability in training, especially on data with complex latent structures. Inspired by the recent efforts that leverage diffusion recovery likelihood learning as a cure for the sampling issue, we introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework, coined as the latent diffusion energy-based model. We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space. Experiments on several challenging tasks demonstrate the superior performance of our model on interpretable text modeling over strong counterparts.

Heavy-tailed distributions naturally arise in many settings, from finance to telecommunications. While regret minimization under sub-Gaussian or bounded support rewards has been widely studied, learning on heavy-tailed distributions only gained popularity over the last decade. In the stochastic heavy-tailed bandit problem, an agent learns under the assumption that the distributions have finite moments of maximum order $1+\epsilon$ which are uniformly bounded by a constant $u$, for some $\epsilon \in (0,1]$. To the best of our knowledge, literature only provides algorithms requiring these two quantities as an input. In this paper, we study the stochastic adaptive heavy-tailed bandit, a variation of the standard setting where both $\epsilon$ and $u$ are unknown to the agent. We show that adaptivity comes at a cost, introducing two lower bounds on the regret of any adaptive algorithm, implying a higher regret w.r.t. the standard setting. Finally, we introduce a specific distributional assumption and provide Adaptive Robust UCB, a regret minimization strategy matching the known lower bound for the heavy-tailed MAB problem.

With their unique combination of characteristics - an energy density almost 100 times that of human muscle, and a power density of 5.3 kW/kg, similar to a jet engine's output - Nylon artificial muscles stand out as particularly apt for robotics applications. However, the necessity of integrating sensors and controllers poses a limitation to their practical usage. Here we report a constant power open-loop controller based on machine learning. We show that we can control the position of a nylon artificial muscle without external sensors. To this end, we construct a mapping from a desired displacement trajectory to a required power using an ensemble encoder-style feed-forward neural network. The neural controller is carefully trained on a physics-based denoised dataset and can be fine-tuned to accommodate various types of thermal artificial muscles, irrespective of the presence or absence of hysteresis.

Many engineering problems involve solving large linear systems of equations. Conjugate gradient (CG) is one of the most popular iterative methods for solving such systems. However, CG typically requires a good preconditioner to speed up convergence. One such preconditioner is the sparse approximate inverse (SPAI). In this paper, we explore the computation of an SPAI on quantum annealing machines by solving a series of quadratic unconstrained binary optimization (QUBO) problems. Numerical experiments are conducted using both well-conditioned and poorly-conditioned linear systems arising from a 2D finite difference formulation of the Poisson problem.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

北京阿比特科技有限公司