The undecidability of basic decision problems for general FIFO machines such as reachability and unboundedness is well-known. In this paper, we provide an underapproximation for the general model by considering only runs that are input-bounded (i.e. the sequence of messages sent through a particular channel belongs to a given bounded language). We prove, by reducing this model to a counter machine with restricted zero tests, that the rational-reachability problem (and by extension, control-state reachability, unboundedness, deadlock, etc.) is decidable. This class of machines subsumes input-letter-bounded machines, flat machines, linear FIFO nets, and monogeneous machines, for which some of these problems were already shown to be decidable. These theoretical results can form the foundations to build a tool to verify general FIFO machines based on the analysis of input-bounded machines.
The basic goal of survivable network design is to build cheap networks that guarantee the connectivity of certain pairs of nodes despite the failure of a few edges or nodes. A celebrated result by Jain [Combinatorica'01] provides a 2-approximation for a wide class of these problems. However nothing better is known even for very basic special cases, raising the natural question whether any improved approximation factor is possible at all. In this paper we address one of the most basic problems in this family for which 2 is still the best-known approximation factor, the Forest Augmentation Problem (FAP): given an undirected unweighted graph (that w.l.o.g. is a forest) and a collection of extra edges (links), compute a minimum cardinality subset of links whose addition to the graph makes it 2-edge-connected. Several better-than-2 approximation algorithms are known for the special case where the input graph is a tree, a.k.a. the Tree Augmentation Problem (TAP). Recently this was achieved also for the weighted version of TAP, and for the k-edge-connectivity generalization of TAP. These results heavily exploit the fact that the input graph is connected, a condition that does not hold in FAP. In this paper we breach the 2-approximation barrier for FAP. Our result is based on two main ingredients. First, we describe a reduction to the Path Augmentation Problem (PAP), the special case of FAP where the input graph is a collection of disjoint paths. Our reduction is not approximation preserving, however it is sufficiently accurate to improve on a factor 2 approximation. Second, we present a better-than-2 approximation algorithm for PAP, an open problem on its own. Here we exploit a novel notion of implicit credits which might turn out to be helpful in future related work.
Specifications of complex, large scale, computer software and hardware systems can be radically simplified by using simple maps from input sequences to output values. These "state machine maps" provide an alternative representation of classical Moore type state machines. Composition of state machine maps corresponds to state machine products and can be used to specify essentially any type of interconnection as well as parallel and distributed computation. State machine maps can also specify abstract properties of systems and are significantly more concise and scalable than traditional representations of automata. Examples included here include specifications of producer/consumer software, network distributed consensus, real-time digital circuits, and operating system scheduling. The motivation for this work comes from experience designing and developing operating systems and real-time software where weak methods for understanding and exploring designs is a well known handicap. The methods introduced here are based on ordinary discrete mathematics, primitive recursive functions and deterministic state machines and are intended, initially, to aid the intuition and understanding of the system developers. Staying strictly within the boundaries of classical deterministic state machines anchors the methods to the algebraic structures of automata and semigroups, obviates any need for axiomatic deduction systems, "formal methods", or extensions to the model, and makes the specifications more faithful to engineering practice. While state machine maps are obvious representations of state machines, the techniques introduced here for defining and composing them are novel.
Multi-Agent Systems (MAS) are notoriously complex and hard to verify. In fact, it is not trivial to model a MAS, and even when a model is built, it is not always possible to verify, in a formal way, that it is actually behaving as we expect. Usually, it is relevant to know whether an agent is capable of fulfilling its own goals. One possible way to check this is through Model Checking. Specifically, by verifying Alternating-time Temporal Logic (ATL) properties, where the notion of strategies for achieving goals can be described. Unfortunately, the resulting model checking problem is not decidable in general. In this paper, we present a verification procedure based on combining Model Checking and Runtime Verification, where sub-models of the MAS model belonging to decidable fragments are verified by a model checker, and runtime monitors are used to verify the rest. Furthermore, we implement our technique and show experimental results.
The number of down-steps between pairs of up-steps in $k_t$-Dyck paths, a generalization of Dyck paths consisting of steps $\{(1, k), (1, -1)\}$ such that the path stays (weakly) above the line $y=-t$, is studied. Results are proved bijectively and by means of generating functions, and lead to several interesting identities as well as links to other combinatorial structures. In particular, there is a connection between $k_t$-Dyck paths and perforation patterns for punctured convolutional codes (binary matrices) used in coding theory. Surprisingly, upon restriction to usual Dyck paths this yields a new combinatorial interpretation of Catalan numbers.
We study the distributed minimum spanning tree (MST) problem, a fundamental problem in distributed computing. It is well-known that distributed MST can be solved in $\tilde{O}(D+\sqrt{n})$ rounds in the standard CONGEST model (where $n$ is the network size and $D$ is the network diameter) and this is essentially the best possible round complexity (up to logarithmic factors). However, in resource-constrained networks such as ad hoc wireless and sensor networks, nodes spending so much time can lead to significant spending of resources such as energy. Motivated by the above consideration, we study distributed algorithms for MST under the \emph{sleeping model} [Chatterjee et al., PODC 2020], a model for design and analysis of resource-efficient distributed algorithms. In the sleeping model, a node can be in one of two modes in any round -- \emph{sleeping} or \emph{awake} (unlike the traditional model where nodes are always awake). Only the rounds in which a node is \emph{awake} are counted, while \emph{sleeping} rounds are ignored. A node spends resources only in the awake rounds and hence the main goal is to minimize the \emph{awake complexity} of a distributed algorithm, the worst-case number of rounds any node is awake. We present deterministic and randomized distributed MST algorithms that have an \emph{optimal} awake complexity of $O(\log n)$ time with a matching lower bound. We also show that our randomized awake-optimal algorithm has essentially the best possible round complexity by presenting a lower bound of $\tilde{\Omega}(n)$ on the product of the awake and round complexity of any distributed algorithm (including randomized) that outputs an MST, where $\tilde{\Omega}$ hides a $1/(\text{polylog } n)$ factor.
We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.
Stability certification and identification of the stabilizable operating region of a dynamical system are two important concerns to ensure its operational safety/security and robustness. With the advent of machine-learning tools, these issues are especially important for systems with machine-learned components in the feedback loop. Here, in presence of unknown discrete variation (DV) of its parameters within a bounded range, a system controlled by a static feedback controller in which the closed-loop (CL) equilibria are subject to variation-induced drift is equivalently represented using a class of time-invariant systems, each with the same control policy. To develop a general theory for stability and stabilizability of such a class of neural-network (NN) controlled nonlinear systems, a Lyapunov-based convex stability certificate is proposed and is further used to devise an estimate of a local Lipschitz upper bound for the NN and a corresponding operating domain in the state space containing an initialization set, starting from where the CL local asymptotic stability of each system in the class is guaranteed, while the trajectory of the original system remains confined to the domain if the DV of the parameters satisfies a certain quasi-stationarity condition. To compute such a robustly stabilizing NN controller, a stability-guaranteed training (SGT) algorithm is also proposed. The effectiveness of the proposed framework is demonstrated using illustrative examples.
Many forms of dependence manifest themselves over time, with behavior of variables in dynamical systems as a paradigmatic example. This paper studies temporal dependence in dynamical systems from a logical perspective, by extending a minimal modal base logic of static functional dependencies. We define a logic for dynamical systems with single time steps, provide a complete axiomatic proof calculus, and show the decidability of the satisfiability problem for a substantial fragment. The system comes in two guises: modal and first-order, that naturally complement each other. Next, we consider a timed semantics for our logic, as an intermediate between state spaces and temporal universes for the unfoldings of a dynamical system. We prove completeness and decidability by combining techniques from dynamic-epistemic logic and modal logic of functional dependencies with complex terms for objects. Also, we extend these results to the timed logic with functional symbols and term identity. Finally, we conclude with a brief outlook on how the system proposed here connects with richer temporal logics of system behavior, and with dynamic topological logic.
The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of $\delta$-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases $\delta$-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.
The increasing prevalence of neural networks (NNs) in safety-critical applications calls for methods to certify their behavior and guarantee safety. This paper presents a backward reachability approach for safety verification of neural feedback loops (NFLs), i.e., closed-loop systems with NN control policies. While recent works have focused on forward reachability as a strategy for safety certification of NFLs, backward reachability offers advantages over the forward strategy, particularly in obstacle avoidance scenarios. Prior works have developed techniques for backward reachability analysis for systems without NNs, but the presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible. To overcome these challenges, we use existing forward NN analysis tools to find affine bounds on the control inputs and solve a series of linear programs (LPs) to efficiently find an approximation of the backprojection (BP) set, i.e., the set of states for which the NN control policy will drive the system to a given target set. We present an algorithm to iteratively find BP set estimates over a given time horizon and demonstrate the ability to reduce conservativeness in the BP set estimates by up to 88% with low additional computational cost. We use numerical results from a double integrator model to verify the efficacy of these algorithms and demonstrate the ability to certify safety for a linearized ground robot model in a collision avoidance scenario where forward reachability fails.