This paper is devoted to a new first order Taylor-like formula where the corresponding remainder is strongly reduced in comparison with the usual one which which appears in the classical Taylor's formula. To derive this new formula, we introduce a linear combination of the first derivatives of the concerned function which are computed at $n+1$ equally spaced points between the two points where the function has to be evaluated. Therefore, we show that an optimal choice of the weights of the linear combination leads to minimize the corresponding remainder. Then, we analyze the Lagrange $P_1$- interpolation error estimate and also the trapezoidal quadrature error to assess the gain of accuracy we get due to this new Taylor-like formula.
In this paper, an upwind GFDM is developed for the coupled heat and mass transfer problems in porous media. GFDM is a meshless method that can obtain the difference schemes of spatial derivatives by using Taylor expansion in local node influence domains and the weighted least squares method. The first-order single-point upstream scheme in the FDM/FVM-based reservoir simulator is introduced to GFDM to form the upwind GFDM, based on which, a sequential coupled discrete scheme of the pressure diffusion equation and the heat convection-conduction equation is solved to obtain pressure and temperature profiles. This paper demonstrates that this method can be used to obtain the meshless solution of the convection-diffusion equation with a stable upwind effect. For porous flow problems, the upwind GFDM is more practical and stable than the method of manually adjusting the influence domain based on the prior information of the flow field to achieve the upwind effect. Two types of calculation errors are analyzed, and three numerical examples are implemented to illustrate the good calculation accuracy and convergence of the upwind GFDM for heat and mass transfer problems in porous media, and indicate the increase of the radius of the node influence domain will increase the calculation error of temperature profiles. Overall, the upwind GFDM discretizes the computational domain using only a point cloud that is generated with much less topological constraints than the generated mesh, but achieves good computational performance as the mesh-based approaches, and therefore has great potential to be developed as a general-purpose numerical simulator for various porous flow problems in domains with complex geometry.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as the Subsampled Newton and Newton Sketch, which can efficiently construct stochastic Hessian estimates for many tasks. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme enjoys local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the iteration, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still enjoys a superlinear convergence~rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.
This paper describes an energy-preserving and globally time-reversible code for weakly compressible smoothed particle hydrodynamics (SPH). We do not add any additional dynamics to the Monaghan's original SPH scheme at the level of ordinary differential equation, but we show how to discretize the equations by using a corrected expression for density and by invoking a symplectic integrator. Moreover, to achieve the global-in-time reversibility, we have to correct the initial state, implement a conservative fluid-wall interaction, and use the fixed-point arithmetic. Although the numerical scheme is reversible globally in time (solvable backwards in time while recovering the initial conditions), we observe thermalization of the particle velocities and growth of the Boltzmann entropy. In other words, when we do not see all the possible details, as in the Boltzmann entropy, which depends only on the one-particle distribution function, we observe the emergence of the second law of thermodynamics (irreversible behavior) from purely reversible dynamics.
This paper is a continuation of the work presented in [Chertock et al., Math. Cli. Weather Forecast. 5, 1 (2019), 65--106]. We study uncertainty propagation in warm cloud dynamics of weakly compressible fluids. The mathematical model is governed by a multiscale system of PDEs in which the macroscopic fluid dynamics is described by a weakly compressible Navier-Stokes system and the microscopic cloud dynamics is modeled by a convection-diffusion-reaction system. In order to quantify uncertainties present in the system, we derive and implement a generalized polynomial chaos stochastic Galerkin method. Unlike the first part of this work, where we restricted our consideration to the partially stochastic case in which the uncertainties were only present in the cloud physics equations, we now study a fully random Navier-Stokes-cloud model in which we include randomness in the macroscopic fluid dynamics as well. We conduct a series of numerical experiments illustrating the accuracy and efficiency of the developed approach.
In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.
This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.
The vast majority of existing algorithms for unsupervised domain adaptation (UDA) focus on adapting from a labeled source domain to an unlabeled target domain directly in a one-off way. Gradual domain adaptation (GDA), on the other hand, assumes a path of $(T-1)$ unlabeled intermediate domains bridging the source and target, and aims to provide better generalization in the target domain by leveraging the intermediate ones. Under certain assumptions, Kumar et al. (2020) proposed a simple algorithm, Gradual Self-Training, along with a generalization bound in the order of $e^{O(T)} \left(\varepsilon_0+O\left(\sqrt{log(T)/n}\right)\right)$ for the target domain error, where $\varepsilon_0$ is the source domain error and $n$ is the data size of each domain. Due to the exponential factor, this upper bound becomes vacuous when $T$ is only moderately large. In this work, we analyze gradual self-training under more general and relaxed assumptions, and prove a significantly improved generalization bound as $\widetilde{O}\left(\varepsilon_0 + T\Delta + T/\sqrt{n} + 1/\sqrt{nT}\right)$, where $\Delta$ is the average distributional distance between consecutive domains. Compared with the existing bound with an exponential dependency on $T$ as a multiplicative factor, our bound only depends on $T$ linearly and additively. Perhaps more interestingly, our result implies the existence of an optimal choice of $T$ that minimizes the generalization error, and it also naturally suggests an optimal way to construct the path of intermediate domains so as to minimize the accumulative path length $T\Delta$ between the source and target. To corroborate the implications of our theory, we examine gradual self-training on multiple semi-synthetic and real datasets, which confirms our findings. We believe our insights provide a path forward toward the design of future GDA algorithms.
There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). This article is to propose a Deep Learning Galerkin Method (DGM) for the closed-loop geothermal system, which is a new coupled multi-physics PDEs and mainly consists of a framework of underground heat exchange pipelines to extract the geothermal heat from the geothermal reservoir. This method is a natural combination of Galerkin Method and machine learning with the solution approximated by a neural network instead of a linear combination of basis functions. We train the neural network by randomly sampling the spatiotemporal points and minimize loss function to satisfy the differential operators, initial condition, boundary and interface conditions. Moreover, the approximate ability of the neural network is proved by the convergence of the loss function and the convergence of the neural network to the exact solution in L^2 norm under certain conditions. Finally, some numerical examples are carried out to demonstrate the approximation ability of the neural networks intuitively.
We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'