亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unsignalized intersection driving is challenging for automated vehicles. For safe and efficient performances, the diverse and dynamic behaviors of interacting vehicles should be considered. Based on a game-theoretic framework, a human-like payoff design methodology is proposed for the automated decision at unsignalized intersections. Prospect Theory is introduced to map the objective collision risk to the subjective driver payoffs, and the driving style can be quantified as a tradeoff between safety and speed. To account for the dynamics of interaction, a probabilistic model is further introduced to describe the acceleration tendency of drivers. Simulation results show that the proposed decision algorithm can describe the dynamic process of two-vehicle interaction in limit cases. Statistics of uniformly-sampled cases simulation indicate that the success rate of safe interaction reaches 98%, while the speed efficiency can also be guaranteed. The proposed approach is further applied and validated in four-vehicle interaction scenarios at a four-arm intersection.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 蒙特卡羅 · 回合 · Integration · 部分可觀測馬爾可夫決策過程 ·
2022 年 4 月 20 日

Automated vehicles require the ability to cooperate with humans for smooth integration into today's traffic. While the concept of cooperation is well known, developing a robust and efficient cooperative trajectory planning method is still a challenge. One aspect of this challenge is the uncertainty surrounding the state of the environment due to limited sensor accuracy. This uncertainty can be represented by a Partially Observable Markov Decision Process. Our work addresses this problem by extending an existing cooperative trajectory planning approach based on Monte Carlo Tree Search for continuous action spaces. It does so by explicitly modeling uncertainties in the form of a root belief state, from which start states for trees are sampled. After the trees have been constructed with Monte Carlo Tree Search, their results are aggregated into return distributions using kernel regression. We apply two risk metrics for the final selection, namely a Lower Confidence Bound and a Conditional Value at Risk. It can be demonstrated that the integration of risk metrics in the final selection policy consistently outperforms a baseline in uncertain environments, generating considerably safer trajectories.

Photonic accelerators have been intensively studied to provide enhanced information processing capability to benefit from the unique attributes of physical processes. Recently, it has been reported that chaotically oscillating ultrafast time series from a laser, called laser chaos, provides the ability to solve multi-armed bandit (MAB) problems or decision-making problems at GHz order. Furthermore, it has been confirmed that the negatively correlated time-domain structure of laser chaos contributes to the acceleration of decision-making. However, the underlying mechanism of why decision-making is accelerated by correlated time series is unknown. In this paper, we demonstrate a theoretical model to account for the acceleration of decision-making by correlated time sequence. We first confirm the effectiveness of the negative autocorrelation inherent in time series for solving two-armed bandit problems using Fourier transform surrogate methods. We propose a theoretical model that concerns the correlated time series subjected to the decision-making system and the internal status of the system therein in a unified manner, inspired by correlated random walks. We demonstrate that the performance derived analytically by the theory agrees well with the numerical simulations, which confirms the validity of the proposed model and leads to optimal system design. The present study paves the new way for the effectiveness of correlated time series for decision-making, impacting artificial intelligence and other applications.

The number of information systems (IS) studies dealing with explainable artificial intelligence (XAI) is currently exploding as the field demands more transparency about the internal decision logic of machine learning (ML) models. However, most techniques subsumed under XAI provide post-hoc-analytical explanations, which have to be considered with caution as they only use approximations of the underlying ML model. Therefore, our paper investigates a series of intrinsically interpretable ML models and discusses their suitability for the IS community. More specifically, our focus is on advanced extensions of generalized additive models (GAM) in which predictors are modeled independently in a non-linear way to generate shape functions that can capture arbitrary patterns but remain fully interpretable. In our study, we evaluate the prediction qualities of five GAMs as compared to six traditional ML models and assess their visual outputs for model interpretability. On this basis, we investigate their merits and limitations and derive design implications for further improvements.

Conditional behavior prediction (CBP) builds up the foundation for a coherent interactive prediction and planning framework that can enable more efficient and less conservative maneuvers in interactive scenarios. In CBP task, we train a prediction model approximating the posterior distribution of target agents' future trajectories conditioned on the future trajectory of an assigned ego agent. However, we argue that CBP may provide overly confident anticipation on how the autonomous agent may influence the target agents' behavior. Consequently, it is risky for the planner to query a CBP model. Instead, we should treat the planned trajectory as an intervention and let the model learn the trajectory distribution under intervention. We refer to it as the interventional behavior prediction (IBP) task. Moreover, to properly evaluate an IBP model with offline datasets, we propose a Shapley-value-based metric to testify if the prediction model satisfies the inherent temporal independence of an interventional distribution. We show that the proposed metric can effectively identify a CBP model violating the temporal independence, which plays an important role when establishing IBP benchmarks.

Unlike conventional cars, connected and autonomous vehicles (CAVs) can cross intersections in a lane-free order and utilise the whole area of intersections. This paper presents a minimum-time optimal control problem to centrally control the CAVs to simultaneously cross an intersection in the shortest possible time. Dual problem theory is employed to convexify the constraints of CAVs to avoid collision with each other and with road boundaries. The developed formulation is smooth and solvable by gradient-based algorithms. Simulation results show that the proposed strategy reduces the crossing time of intersections by an average of 52% and 54% as compared to, respectively, the state-of-the-art reservation-based and lane-free methods. Furthermore, the crossing time by the proposed strategy is fixed to a constant value for an intersection regardless of the number of CAVs.

The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.

Gaussian process regression is increasingly applied for learning unknown dynamical systems. In particular, the implicit quantification of the uncertainty of the learned model makes it a promising approach for safety-critical applications. When using Gaussian process regression to learn unknown systems, a commonly considered approach consists of learning the residual dynamics after applying some generic discretization technique, which might however disregard properties of the underlying physical system. Variational integrators are a less common yet promising approach to discretization, as they retain physical properties of the underlying system, such as energy conservation and satisfaction of explicit kinematic constraints. In this work, we present a novel structure-preserving learning-based modelling approach that combines a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression. We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty. The simulative evaluation of the proposed method shows desirable energy conservation properties in accordance with general theoretical results and demonstrates exact constraint satisfaction for constrained dynamical systems.

Connected and autonomous vehicles (CAVs) improve the throughput of intersections by crossing in a lane-free order as compared to the signalised crossing of human drivers. However, it is challenging to quantify such an improvement because the available frameworks to analyse the capacity (i.e., the maximum throughput) of the conventional intersections does not apply to the lane-free ones. This paper proposes a novel theoretical framework to numerically simulate and compare the capacity of lane-free and conventional intersections. The results show that the maximum number of vehicles passing through a lane-free intersection is up to seven times more than a signalised intersection managed by the state-of-the-art max-pressure and Webster algorithms. A sensitivity analysis shows that, in contrast to the signalised intersections, the capacity of the lane-free intersections improves by an increase in initial speed, the maximum permissible speed and acceleration of vehicles.

Proactive dialogue system is able to lead the conversation to a goal topic and has advantaged potential in bargain, persuasion and negotiation. Current corpus-based learning manner limits its practical application in real-world scenarios. To this end, we contribute to advance the study of the proactive dialogue policy to a more natural and challenging setting, i.e., interacting dynamically with users. Further, we call attention to the non-cooperative user behavior -- the user talks about off-path topics when he/she is not satisfied with the previous topics introduced by the agent. We argue that the targets of reaching the goal topic quickly and maintaining a high user satisfaction are not always converge, because the topics close to the goal and the topics user preferred may not be the same. Towards this issue, we propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting. Specifically, we learn the trade-off via a learned goal weight, which consists of four factors (dialogue turn, goal completion difficulty, user satisfaction estimation, and cooperative degree). The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

北京阿比特科技有限公司