Machine Learning (ML) systems, particularly when deployed in high-stakes domains, are deeply consequential. They can exacerbate existing inequities, create new modes of discrimination, and reify outdated social constructs. Accordingly, the social context (i.e. organisations, teams, cultures) in which ML systems are developed is a site of active research for the field of AI ethics, and intervention for policymakers. This paper focuses on one aspect of social context that is often overlooked: interactions between practitioners and the tools they rely on, and the role these interactions play in shaping ML practices and the development of ML systems. In particular, through an empirical study of questions asked on the Stack Exchange forums, the use of interactive computing platforms (e.g. Jupyter Notebook and Google Colab) in ML practices is explored. I find that interactive computing platforms are used in a host of learning and coordination practices, which constitutes an infrastructural relationship between interactive computing platforms and ML practitioners. I describe how ML practices are co-evolving alongside the development of interactive computing platforms, and highlight how this risks making invisible aspects of the ML life cycle that AI ethics researchers' have demonstrated to be particularly salient for the societal impact of deployed ML systems.
There are individual differences in expressive behaviors driven by cultural norms and personality. This between-person variation can result in reduced emotion recognition performance. Therefore, personalization is an important step in improving the generalization and robustness of speech emotion recognition. In this paper, to achieve unsupervised personalized emotion recognition, we first pre-train an encoder with learnable speaker embeddings in a self-supervised manner to learn robust speech representations conditioned on speakers. Second, we propose an unsupervised method to compensate for the label distribution shifts by finding similar speakers and leveraging their label distributions from the training set. Extensive experimental results on the MSP-Podcast corpus indicate that our method consistently outperforms strong personalization baselines and achieves state-of-the-art performance for valence estimation.
Equilibrium propagation (EP) is a compelling alternative to the backpropagation of error algorithm (BP) for computing gradients of neural networks on biological or analog neuromorphic substrates. Still, the algorithm requires weight symmetry and infinitesimal equilibrium perturbations, i.e., nudges, to estimate unbiased gradients efficiently. Both requirements are challenging to implement in physical systems. Yet, whether and how weight asymmetry affects its applicability is unknown because, in practice, it may be masked by biases introduced through the finite nudge. To address this question, we study generalized EP, which can be formulated without weight symmetry, and analytically isolate the two sources of bias. For complex-differentiable non-symmetric networks, we show that the finite nudge does not pose a problem, as exact derivatives can still be estimated via a Cauchy integral. In contrast, weight asymmetry introduces bias resulting in low task performance due to poor alignment of EP's neuronal error vectors compared to BP. To mitigate this issue, we present a new homeostatic objective that directly penalizes functional asymmetries of the Jacobian at the network's fixed point. This homeostatic objective dramatically improves the network's ability to solve complex tasks such as ImageNet 32x32. Our results lay the theoretical groundwork for studying and mitigating the adverse effects of imperfections of physical networks on learning algorithms that rely on the substrate's relaxation dynamics.
Stein's method for Gaussian process approximation can be used to bound the differences between the expectations of smooth functionals $h$ of a c\`adl\`ag random process $X$ of interest and the expectations of the same functionals of a well understood target random process $Z$ with continuous paths. Unfortunately, the class of smooth functionals for which this is easily possible is very restricted. Here, we prove an infinite dimensional Gaussian smoothing inequality, which enables the class of functionals to be greatly expanded -- examples are Lipschitz functionals with respect to the uniform metric, and indicators of arbitrary events -- in exchange for a loss of precision in the bounds. Our inequalities are expressed in terms of the smooth test function bound, an expectation of a functional of $X$ that is closely related to classical tightness criteria, a similar expectation for $Z$, and, for the indicator of a set $K$, the probability $\mathbb{P}(Z \in K^\theta \setminus K^{-\theta})$ that the target process is close to the boundary of $K$.
Benefiting from the development of deep learning, text-to-speech (TTS) techniques using clean speech have achieved significant performance improvements. The data collected from real scenes often contains noise and generally needs to be denoised by speech enhancement models. Noise-robust TTS models are often trained using the enhanced speech, which thus suffer from speech distortion and background noise that affect the quality of the synthesized speech. Meanwhile, it was shown that self-supervised pre-trained models exhibit excellent noise robustness on many speech tasks, implying that the learned representation has a better tolerance for noise perturbations. In this work, we therefore explore pre-trained models to improve the noise robustness of TTS models. Based on HiFi-GAN, we first propose a representation-to-waveform vocoder, which aims to learn to map the representation of pre-trained models to the waveform. We then propose a text-to-representation FastSpeech2 model, which aims to learn to map text to pre-trained model representations. Experimental results on the LJSpeech and LibriTTS datasets show that our method outperforms those using speech enhancement methods in both subjective and objective metrics. Audio samples are available at: //zqs01.github.io/rep2wav.
Trojans are one of the most threatening network attacks currently. HTTP-based Trojan, in particular, accounts for a considerable proportion of them. Moreover, as the network environment becomes more complex, HTTP-based Trojan is more concealed than others. At present, many intrusion detection systems (IDSs) are increasingly difficult to effectively detect such Trojan traffic due to the inherent shortcomings of the methods used and the backwardness of training data. Classical anomaly detection and traditional machine learning-based (TML-based) anomaly detection are highly dependent on expert knowledge to extract features artificially, which is difficult to implement in HTTP-based Trojan traffic detection. Deep learning-based (DL-based) anomaly detection has been locally applied to IDSs, but it cannot be transplanted to HTTP-based Trojan traffic detection directly. To solve this problem, in this paper, we propose a neural network detection model (HSTF-Model) based on hierarchical spatiotemporal features of traffic. Meanwhile, we combine deep learning algorithms with expert knowledge through feature encoders and statistical characteristics to improve the self-learning ability of the model. Experiments indicate that F1 of HSTF-Model can reach 99.4% in real traffic. In addition, we present a dataset BTHT consisting of HTTP-based benign and Trojan traffic to facilitate related research in the field.
Galois self-orthogonal (SO) codes are generalizations of Euclidean and Hermitian SO codes. Algebraic geometry (AG) codes are the first known class of linear codes exceeding the Gilbert-Varshamov bound. Both of them have attracted much attention for their rich algebraic structures and wide applications in these years. In this paper, we consider them together and study Galois SO AG codes. A criterion for an AG code being Galois SO is presented. Based on this criterion, we construct several new classes of maximum distance separable (MDS) Galois SO AG codes from projective lines and several new classes of Galois SO AG codes from projective elliptic curves, hyper-elliptic curves and hermitian curves. In addition, we give an embedding method that allows us to obtain more MDS Galois SO codes from known MDS Galois SO AG codes.
I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of $n$ letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in $n$ steps. Meanwhile, the mastermind number, defined as the smallest winning set of guesses in infinite Mastermind for sequences of length $\omega$ over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of ZFC, for it is provably equal to the eventually different number $\frak{d}({\neq^*})$, which is the same as the covering number of the meager ideal $\text{cov}(\mathcal{M})$. I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.
Deep neural networks have shown remarkable performance when trained on independent and identically distributed data from a fixed set of classes. However, in real-world scenarios, it can be desirable to train models on a continuous stream of data where multiple classification tasks are presented sequentially. This scenario, known as Continual Learning (CL) poses challenges to standard learning algorithms which struggle to maintain knowledge of old tasks while learning new ones. This stability-plasticity dilemma remains central to CL and multiple metrics have been proposed to adequately measure stability and plasticity separately. However, none considers the increasing difficulty of the classification task, which inherently results in performance loss for any model. In that sense, we analyze some limitations of current metrics and identify the presence of setup-induced forgetting. Therefore, we propose new metrics that account for the task's increasing difficulty. Through experiments on benchmark datasets, we demonstrate that our proposed metrics can provide new insights into the stability-plasticity trade-off achieved by models in the continual learning environment.
Textual geographic information is indispensable and heavily relied upon in practical applications. The absence of clear distribution poses challenges in effectively harnessing geographic information, thereby driving our quest for exploration. We contend that geographic information is influenced by human behavior, cognition, expression, and thought processes, and given our intuitive understanding of natural systems, we hypothesize its conformity to the Gamma distribution. Through rigorous experiments on a diverse range of 24 datasets encompassing different languages and types, we have substantiated this hypothesis, unearthing the underlying regularities governing the dimensions of quantity, length, and distance in geographic information. Furthermore, theoretical analyses and comparisons with Gaussian distributions and Zipf's law have refuted the contingency of these laws. Significantly, we have estimated the upper bounds of human utilization of geographic information, pointing towards the existence of uncharted territories. Also, we provide guidance in geographic information extraction. Hope we peer its true countenance uncovering the veil of geographic information.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.