In recent years, digital humans have been widely applied in augmented/virtual reality (A/VR), where viewers are allowed to freely observe and interact with the volumetric content. However, the digital humans may be degraded with various distortions during the procedure of generation and transmission. Moreover, little effort has been put into the perceptual quality assessment of digital humans. Therefore, it is urgent to carry out objective quality assessment methods to tackle the challenge of digital human quality assessment (DHQA). In this paper, we develop a novel no-reference (NR) method based on Transformer to deal with DHQA in a multi-task manner. Specifically, the front 2D projections of the digital humans are rendered as inputs and the vision transformer (ViT) is employed for the feature extraction. Then we design a multi-task module to jointly classify the distortion types and predict the perceptual quality levels of digital humans. The experimental results show that the proposed method well correlates with the subjective ratings and outperforms the state-of-the-art quality assessment methods.
For a long time, images have proved perfect at both storing and conveying rich semantics, especially human emotions. A lot of research has been conducted to provide machines with the ability to recognize emotions in photos of people. Previous methods mostly focus on facial expressions but fail to consider the scene context, meanwhile scene context plays an important role in predicting emotions, leading to more accurate results. In addition, Valence-Arousal-Dominance (VAD) values offer a more precise quantitative understanding of continuous emotions, yet there has been less emphasis on predicting them compared to discrete emotional categories. In this paper, we present a novel Multi-Branch Network (MBN), which utilizes various source information, including faces, bodies, and scene contexts to predict both discrete and continuous emotions in an image. Experimental results on EMOTIC dataset, which contains large-scale images of people in unconstrained situations labeled with 26 discrete categories of emotions and VAD values, show that our proposed method significantly outperforms state-of-the-art methods with 28.4% in mAP and 0.93 in MAE. The results highlight the importance of utilizing multiple contextual information in emotion prediction and illustrate the potential of our proposed method in a wide range of applications, such as effective computing, human-computer interaction, and social robotics. Source code: //github.com/BaoNinh2808/Multi-Branch-Network-for-Imagery-Emotion-Prediction
Photoacoustic Microscopy (PAM) images integrating the advantages of optical contrast and acoustic resolution have been widely used in brain studies. However, there exists a trade-off between scanning speed and image resolution. Compared with traditional raster scanning, rotational scanning provides good opportunities for fast PAM imaging by optimizing the scanning mechanism. Recently, there is a trend to incorporate deep learning into the scanning process to further increase the scanning speed.Yet, most such attempts are performed for raster scanning while those for rotational scanning are relatively rare. In this study, we propose a novel and well-performing super-resolution framework for rotational scanning-based PAM imaging. To eliminate adjacent rows' displacements due to subject motion or high-frequency scanning distortion,we introduce a registration module across odd and even rows in the preprocessing and incorporate displacement degradation in the training. Besides, gradient-based patch selection is proposed to increase the probability of blood vessel patches being selected for training. A Transformer-based network with a global receptive field is applied for better performance. Experimental results on both synthetic and real datasets demonstrate the effectiveness and generalizability of our proposed framework for rotationally scanned PAM images'super-resolution, both quantitatively and qualitatively. Code is available at //github.com/11710615/PAMSR.git.
Emotion detection is a crucial component of Games User Research (GUR), as it allows game developers to gain insights into players' emotional experiences and tailor their games accordingly. However, detecting emotions in Virtual Reality (VR) games is challenging due to the Head-Mounted Display (HMD) that covers the top part of the player's face, namely, their eyes and eyebrows, which provide crucial information for recognizing the impression. To tackle this we used a Convolutional Neural Network (CNN) to train a model to predict emotions in full-face images where the eyes and eyebrows are covered. We used the FER2013 dataset, which we modified to cover eyes and eyebrows in images. The model in these images can accurately recognize seven different emotions which are anger, happiness, disgust, fear, impartiality, sadness and surprise. We assessed the model's performance by testing it on two VR games and using it to detect players' emotions. We collected self-reported emotion data from the players after the gameplay sessions. We analyzed the data collected from our experiment to understand which emotions players experience during the gameplay. We found that our approach has the potential to enhance gameplay analysis by enabling the detection of players' emotions in VR games, which can help game developers create more engaging and immersive game experiences.
In modern days, the ability to carry out computations in parallel is key to efficient implementations of computationally intensive algorithms. This paper investigates the applicability of the previously proposed Augmented Island Resampling Particle Filter (AIRPF) -- an algorithm designed for parallel implementations -- to particle Markov Chain Monte Carlo (PMCMC). We show that AIRPF produces a non-negative unbiased estimator of the marginal likelihood and hence is suitable for PMCMC. We also prove stability properties, similar to those of the $\alpha$SMC algorithm, for AIRPF. This implies that the error of AIRPF can be bounded uniformly in time by controlling the effective number of filters, which in turn can be done by adaptively constraining the interactions between filters. We demonstrate the superiority of AIRPF over independent Bootstrap Particle Filters, not only numerically, but also theoretically. To this end, we extend the previously proposed collision analysis approach to derive an explicit expression for the variance of the marginal likelihood estimate. This expression admits exact evaluation of the variance in some simple scenarios as we shall also demonstrate.
Deep neural networks (DNNs) have achieved tremendous success in various applications including video action recognition, yet remain vulnerable to backdoor attacks (Trojans). The backdoor-compromised model will mis-classify to the target class chosen by the attacker when a test instance (from a non-target class) is embedded with a specific trigger, while maintaining high accuracy on attack-free instances. Although there are extensive studies on backdoor attacks against image data, the susceptibility of video-based systems under backdoor attacks remains largely unexplored. Current studies are direct extensions of approaches proposed for image data, e.g., the triggers are independently embedded within the frames, which tend to be detectable by existing defenses. In this paper, we introduce a simple yet effective backdoor attack against video data. Our proposed attack, adding perturbations in a transformed domain, plants an imperceptible, temporally distributed trigger across the video frames, and is shown to be resilient to existing defensive strategies. The effectiveness of the proposed attack is demonstrated by extensive experiments with various well-known models on two video recognition benchmarks, UCF101 and HMDB51, and a sign language recognition benchmark, Greek Sign Language (GSL) dataset. We delve into the impact of several influential factors on our proposed attack and identify an intriguing effect termed "collateral damage" through extensive studies.
Temporal action localization aims to identify the boundaries and categories of actions in videos, such as scoring a goal in a football match. Single-frame supervision has emerged as a labor-efficient way to train action localizers as it requires only one annotated frame per action. However, it often suffers from poor performance due to the lack of precise boundary annotations. To address this issue, we propose a visual analysis method that aligns similar actions and then propagates a few user-provided annotations (e.g. , boundaries, category labels) to similar actions via the generated alignments. Our method models the alignment between actions as a heaviest path problem and the annotation propagation as a quadratic optimization problem. As the automatically generated alignments may not accurately match the associated actions and could produce inaccurate localization results, we develop a storyline visualization to explain the localization results of actions and their alignments. This visualization facilitates users in correcting wrong localization results and misalignments. The corrections are then used to improve the localization results of other actions. The effectiveness of our method in improving localization performance is demonstrated through quantitative evaluation and a case study.
Large, general purpose language models have demonstrated impressive performance across many different conversational domains. While multi-domain language models achieve low overall perplexity, their outputs are not guaranteed to stay within the domain of a given input prompt. This paper proposes domain privacy as a novel way to quantify how likely a conditional language model will leak across domains. We also develop policy functions based on token-level domain classification, and propose an efficient fine-tuning method to improve the trained model's domain privacy. Experiments on membership inference attacks show that our proposed method has comparable resiliency to methods adapted from recent literature on differentially private language models.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal