亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce MIMII DUE, a new dataset for malfunctioning industrial machine investigation and inspection with domain shifts due to changes in operational and environmental conditions. Conventional methods for anomalous sound detection face practical challenges because the distribution of features changes between the training and operational phases (called domain shift) due to various real-world factors. To check the robustness against domain shifts, we need a dataset that actually includes domain shifts, but such a dataset does not exist so far. The new dataset we created consists of the normal and abnormal operating sounds of five different types of industrial machines under two different operational/environmental conditions (source domain and target domain) independent of normal/abnormal, with domain shifts occurring between the two domains. Experimental results showed significant performance differences between the source and target domains, indicating that the dataset contains the domain shifts. These findings demonstrate that the dataset will be helpful for checking the robustness against domain shifts. The dataset is a subset of the dataset for DCASE 2021 Challenge Task 2 and freely available for download at //zenodo.org/record/4740355

相關內容

Adversarial attacks are feasible in the real world for object detection. However, most of the previous works have tried to learn local "patches" applied to an object to fool detectors, which become less effective in squint view angles. To address this issue, we propose the Dense Proposals Attack (DPA) to learn one-piece, physical, and targeted adversarial camouflages for detectors. The camouflages are one-piece because they are generated as a whole for an object, physical because they remain adversarial when filmed under arbitrary viewpoints and different illumination conditions, and targeted because they can cause detectors to misidentify an object as a specific target class. In order to make the generated camouflages robust in the physical world, we introduce a combination of transformations to model the physical phenomena. In addition, to improve the attacks, DPA simultaneously attacks all the classifications in the fixed proposals. Moreover, we build a virtual 3D scene using the Unity simulation engine to fairly and reproducibly evaluate different physical attacks. Extensive experiments demonstrate that DPA outperforms the state-of-the-art methods, and it is generic for any object and generalized well to the real world, posing a potential threat to the security-critical computer vision systems.

Assured AI in unrestricted settings is a critical problem. Our framework addresses AI assurance challenges lying at the intersection of domain adaptation, fairness, and counterfactuals analysis, operating via the discovery and intervention on factors of variations in data (e.g. weather or illumination conditions) that significantly affect the robustness of AI models. Robustness is understood here as insensitivity of the model performance to variations in sensitive factors. Sensitive factors are traditionally set in a supervised setting, whereby factors are known a-priori (e.g. for fairness this could be factors like sex or race). In contrast, our motivation is real-life scenarios where less, or nothing, is actually known a-priori about certain factors that cause models to fail. This leads us to consider various settings (unsupervised, domain generalization, semi-supervised) that correspond to different degrees of incomplete knowledge about those factors. Therefore, our two step approach works by a) discovering sensitive factors that cause AI systems to fail in a unsupervised fashion, and then b) intervening models to lessen these factor's influence. Our method considers 3 interventions consisting of Augmentation, Coherence, and Adversarial Interventions (ACAI). We demonstrate the ability for interventions on discovered/source factors to generalize to target/real factors. We also demonstrate how adaptation to real factors of variations can be performed in the semi-supervised case where some target factor labels are known, via automated intervention selection. Experiments show that our approach improves on baseline models, with regard to achieving optimal utility vs. sensitivity/robustness tradeoffs.

Biometric technology has been increasingly deployed in the past decade, offering greater security and convenience than traditional methods of personal recognition. Although biometric signals' quality heavily affects a biometric system's performance, prior research on evaluating quality is limited. Quality is a critical issue in security, especially in adverse scenarios involving surveillance cameras, forensics, portable devices, or remote access through the Internet. This article analyzes what factors negatively impact biometric quality, how to overcome them, and how to incorporate quality measures into biometric systems. A review of the state of the art in these matters gives an overall framework for the challenges of biometric quality.

While self-training has advanced semi-supervised semantic segmentation, it severely suffers from the long-tailed class distribution on real-world semantic segmentation datasets that make the pseudo-labeled data bias toward majority classes. In this paper, we present a simple and yet effective Distribution Alignment and Random Sampling (DARS) method to produce unbiased pseudo labels that match the true class distribution estimated from the labeled data. Besides, we also contribute a progressive data augmentation and labeling strategy to facilitate model training with pseudo-labeled data. Experiments on both Cityscapes and PASCAL VOC 2012 datasets demonstrate the effectiveness of our approach. Albeit simple, our method performs favorably in comparison with state-of-the-art approaches. Code will be available at //github.com/CVMI-Lab/DARS.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

The development of deep learning techniques has allowed Neural Machine Translation (NMT) models to become extremely powerful, given sufficient training data and training time. However, systems struggle when translating text from a new domain with a distinct style or vocabulary. Tuning on a representative training corpus allows good in-domain translation, but such data-centric approaches can cause over-fitting to new data and `catastrophic forgetting' of previously learned behaviour. We concentrate on more robust approaches to domain adaptation for NMT, particularly the case where a system may need to translate sentences from multiple domains. We divide techniques into those relating to data selection, model architecture, parameter adaptation procedure, and inference procedure. We finally highlight the benefits of domain adaptation and multi-domain adaptation techniques to other lines of NMT research.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

Neural Machine Translation (NMT) has drawn much attention due to its promising translation performance recently. However, several studies indicate that NMT often generates fluent but unfaithful translations. In this paper, we propose a method to alleviate this problem by using a phrase table as recommendation memory. The main idea is to add bonus to words worthy of recommendation, so that NMT can make correct predictions. Specifically, we first derive a prefix tree to accommodate all the candidate target phrases by searching the phrase translation table according to the source sentence. Then, we construct a recommendation word set by matching between candidate target phrases and previously translated target words by NMT. After that, we determine the specific bonus value for each recommendable word by using the attention vector and phrase translation probability. Finally, we integrate this bonus value into NMT to improve the translation results. The extensive experiments demonstrate that the proposed methods obtain remarkable improvements over the strong attentionbased NMT.

北京阿比特科技有限公司