亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional applications of latent class models (LCMs) often focus on scenarios where a set of unobserved classes are well-defined and easily distinguishable. However, in numerous real-world applications, these classes are weakly separated and difficult to distinguish, creating significant numerical challenges. To address these issues, we have developed an R package ddtlcm that provides comprehensive analysis and visualization tools designed to enhance the robustness and interpretability of LCMs in the presence of weak class separation, particularly useful for small sample sizes. This package implements a tree-regularized Bayesian LCM that leverages statistical strength between latent classes to make better estimates using limited data. A Shiny app has also been developed to improve user interactivity. In this paper, we showcase a typical analysis pipeline with simulated data using ddtlcm. All software has been made publicly available on CRAN and GitHub.

相關內容

Stress prediction in porous materials and structures is challenging due to the high computational cost associated with direct numerical simulations. Convolutional Neural Network (CNN) based architectures have recently been proposed as surrogates to approximate and extrapolate the solution of such multiscale simulations. These methodologies are usually limited to 2D problems due to the high computational cost of 3D voxel based CNNs. We propose a novel geometric learning approach based on a Graph Neural Network (GNN) that efficiently deals with three-dimensional problems by performing convolutions over 2D surfaces only. Following our previous developments using pixel-based CNN, we train the GNN to automatically add local fine-scale stress corrections to an inexpensively computed coarse stress prediction in the porous structure of interest. Our method is Bayesian and generates densities of stress fields, from which credible intervals may be extracted. As a second scientific contribution, we propose to improve the extrapolation ability of our network by deploying a strategy of online physics-based corrections. Specifically, we condition the posterior predictions of our probabilistic predictions to satisfy partial equilibrium at the microscale, at the inference stage. This is done using an Ensemble Kalman algorithm, to ensure tractability of the Bayesian conditioning operation. We show that this innovative methodology allows us to alleviate the effect of undesirable biases observed in the outputs of the uncorrected GNN, and improves the accuracy of the predictions in general.

We propose a new framework for the simultaneous inference of monotone and smoothly time-varying functions under complex temporal dynamics utilizing the monotone rearrangement and the nonparametric estimation. We capitalize the Gaussian approximation for the nonparametric monotone estimator and construct the asymptotically correct simultaneous confidence bands (SCBs) by carefully designed bootstrap methods. We investigate two general and practical scenarios. The first is the simultaneous inference of monotone smooth trends from moderately high-dimensional time series, and the proposed algorithm has been employed for the joint inference of temperature curves from multiple areas. Specifically, most existing methods are designed for a single monotone smooth trend. In such cases, our proposed SCB empirically exhibits the narrowest width among existing approaches while maintaining confidence levels, and has been used for testing several hypotheses tailored to global warming. The second scenario involves simultaneous inference of monotone and smoothly time-varying regression coefficients in time-varying coefficient linear models. The proposed algorithm has been utilized for testing the impact of sunshine duration on temperature which is believed to be increasing by the increasingly severe greenhouse effect. The validity of the proposed methods has been justified in theory as well as by extensive simulations.

In prediction settings where data are collected over time, it is often of interest to understand both the importance of variables for predicting the response at each time point and the importance summarized over the time series. Building on recent advances in estimation and inference for variable importance measures, we define summaries of variable importance trajectories. These measures can be estimated and the same approaches for inference can be applied regardless of the choice of the algorithm(s) used to estimate the prediction function. We propose a nonparametric efficient estimation and inference procedure as well as a null hypothesis testing procedure that are valid even when complex machine learning tools are used for prediction. Through simulations, we demonstrate that our proposed procedures have good operating characteristics, and we illustrate their use by investigating the longitudinal importance of risk factors for suicide attempt.

This paper introduces graph-based mutually exciting processes (GB-MEP) to model event times in network point processes, focusing on an application to docked bike-sharing systems. GB-MEP incorporates known relationships between nodes in a graph within the intensity function of a node-based multivariate Hawkes process. This approach reduces the number of parameters to a quantity proportional to the number of nodes in the network, resulting in significant advantages for computational scalability when compared to traditional methods. The model is applied on event data observed on the Santander Cycles network in central London, demonstrating that exploiting network-wide information related to geographical location of the stations is beneficial to improve the performance of node-based models for applications in bike-sharing systems. The proposed GB-MEP framework is more generally applicable to any network point process where a distance function between nodes is available, demonstrating wider applicability.

Power functions with low $c$-differential uniformity have been widely studied not only because of their strong resistance to multiplicative differential attacks, but also low implementation cost in hardware. Furthermore, the $c$-differential spectrum of a function gives a more precise characterization of its $c$-differential properties. Let $f(x)=x^{\frac{p^n+3}{2}}$ be a power function over the finite field $\mathbb{F}_{p^{n}}$, where $p\neq3$ is an odd prime and $n$ is a positive integer. In this paper, for all primes $p\neq3$, by investigating certain character sums with regard to elliptic curves and computing the number of solutions of a system of equations over $\mathbb{F}_{p^{n}}$, we determine explicitly the $(-1)$-differential spectrum of $f$ with a unified approach. We show that if $p^n \equiv 3 \pmod 4$, then $f$ is a differentially $(-1,3)$-uniform function except for $p^n\in\{7,19,23\}$ where $f$ is an APcN function, and if $p^n \equiv 1 \pmod 4$, the $(-1)$-differential uniformity of $f$ is equal to $4$. In addition, an upper bound of the $c$-differential uniformity of $f$ is also given.

This paper focuses on the construction of accurate and predictive data-driven reduced models of large-scale numerical simulations with complex dynamics and sparse training data sets. In these settings, standard, single-domain approaches may be too inaccurate or may overfit and hence generalize poorly. Moreover, processing large-scale data sets typically requires significant memory and computing resources which can render single-domain approaches computationally prohibitive. To address these challenges, we introduce a domain decomposition formulation into the construction of a data-driven reduced model. In doing so, the basis functions used in the reduced model approximation become localized in space, which can increase the accuracy of the domain-decomposed approximation of the complex dynamics. The decomposition furthermore reduces the memory and computing requirements to process the underlying large-scale training data set. We demonstrate the effectiveness and scalability of our approach in a large-scale three-dimensional unsteady rotating detonation rocket engine simulation scenario with over $75$ million degrees of freedom and a sparse training data set. Our results show that compared to the single-domain approach, the domain-decomposed version reduces both the training and prediction errors for pressure by up to $13 \%$ and up to $5\%$ for other key quantities, such as temperature, and fuel and oxidizer mass fractions. Lastly, our approach decreases the memory requirements for processing by almost a factor of four, which in turn reduces the computing requirements as well.

Physics-based and first-principles models pervade the engineering and physical sciences, allowing for the ability to model the dynamics of complex systems with a prescribed accuracy. The approximations used in deriving governing equations often result in discrepancies between the model and sensor-based measurements of the system, revealing the approximate nature of the equations and/or the signal-to-noise ratio of the sensor itself. In modern dynamical systems, such discrepancies between model and measurement can lead to poor quantification, often undermining the ability to produce accurate and precise control algorithms. We introduce a discrepancy modeling framework to identify the missing physics and resolve the model-measurement mismatch with two distinct approaches: (i) by learning a model for the evolution of systematic state-space residual, and (ii) by discovering a model for the deterministic dynamical error. Regardless of approach, a common suite of data-driven model discovery methods can be used. The choice of method depends on one's intent (e.g., mechanistic interpretability) for discrepancy modeling, sensor measurement characteristics (e.g., quantity, quality, resolution), and constraints imposed by practical applications (e.g., modeling approaches using the suite of data-driven modeling methods on three continuous dynamical systems under varying signal-to-noise ratios. Finally, we emphasize structural shortcomings of each discrepancy modeling approach depending on error type. In summary, if the true dynamics are unknown (i.e., an imperfect model), one should learn a discrepancy model of the missing physics in the dynamical space. Yet, if the true dynamics are known yet model-measurement mismatch still exists, one should learn a discrepancy model in the state space.

Generalized linear models (GLMs) are routinely used for modeling relationships between a response variable and a set of covariates. The simple form of a GLM comes with easy interpretability, but also leads to concerns about model misspecification impacting inferential conclusions. A popular semi-parametric solution adopted in the frequentist literature is quasi-likelihood, which improves robustness by only requiring correct specification of the first two moments. We develop a robust approach to Bayesian inference in GLMs through quasi-posterior distributions. We show that quasi-posteriors provide a coherent generalized Bayes inference method, while also approximating so-called coarsened posteriors. In so doing, we obtain new insights into the choice of coarsening parameter. Asymptotically, the quasi-posterior converges in total variation to a normal distribution and has important connections with the loss-likelihood bootstrap posterior. We demonstrate that it is also well-calibrated in terms of frequentist coverage. Moreover, the loss-scale parameter has a clear interpretation as a dispersion, and this leads to a consolidated method of moments estimator.

We propose a new variable selection procedure for a functional linear model with multiple scalar responses and multiple functional predictors. This method is based on basis expansions of the involved functional predictors and coefficients that lead to a multivariate linear regression model. Then a criterion by means of which the variable selection problem reduces to that of estimating a suitable set is introduced. Estimation of this set is achieved by using appropriate penalizations of estimates of this criterion, so leading to our proposal. A simulation study that permits to investigate the effectiveness of the proposed approach and to compare it with existing methods is given.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司