In this paper, we investigate the problem of distributed transmission control for unmanned aerial vehicles (UAVs) operating in unlicensed spectrum bands. We develop a rigorous interference-aware queuing analysis framework that jointly considers two inter-dependent factors: (i) limited-size queues with delay-constrained packet arrival, and (ii) in-band interference introduced by other ground/aerial users. We aim to optimize the expected throughput by jointly analyzing these factors. In the queuing analysis, we explore two packet loss probabilities including, buffer overflow model and time threshold model. For interference analysis, we investigate the outage probability and packet losses due to low signal-to-interference-plus-noise ratio (SINR). We introduce two algorithms namely, Interference-Aware Transmission Control (IA-TC), and Interference-Aware Distributed Transmission Control (IA-DTC). These algorithms maximize the expected throughput by adjusting transmission policies to balance the trade-offs between packet drop from queues vs. transmission errors due to low SINRs. We implement the proposed algorithms and demonstrate that the optimal transmission policy under various scenarios is found.
This paper revisits a classical challenge in the design of stabilizing controllers for nonlinear systems with a norm-bounded input constraint. By extending Lin-Sontag's universal formula and introducing a generic (state-dependent) scaling term, a unifying controller design method is proposed. The incorporation of this generic scaling term gives a unified controller and enables the derivation of alternative universal formulas with various favorable properties, which makes it suitable for tailored control designs to meet specific requirements and provides versatility across different control scenarios. Additionally, we present a constructive approach to determine the optimal scaling term, leading to an explicit solution to an optimization problem, named optimization-based universal formula. The resulting controller ensures asymptotic stability, satisfies a norm-bounded input constraint, and optimizes a predefined cost function. Finally, the essential properties of the unified controllers are analyzed, including smoothness, continuity at the origin, stability margin, and inverse optimality. Simulations validate the approach, showcasing its effectiveness in addressing a challenging stabilizing control problem of a nonlinear system.
In this paper, we provide expressions for the secrecy outage probability (SOP) for suboptimal and optimal opportunistic scheduling schemes in a reconfigurable intelligent surface (RIS) aided system with multiple eavesdroppers in approximate closed form. A suboptimal scheduling (SS) scheme is analyzed, which is used when the channel state information (CSI) of the eavesdropping links is unavailable, and the optimal scheduling (OS) scheme is also analyzed, which is used when the global CSI is available. For each scheme, we provide a simplified expression for the SOP in the high signal-to-noise ratio (SNR) regime to demonstrate its behavior as a function of the key system parameters. At high SNR, the SOP saturates to a constant level which decreases exponentially with the number of RIS elements in the SS scheme and with the product of the number of RIS elements and the number of users in the OS scheme. We compare the performance of the opportunistic user scheduling schemes with that of a non-orthogonal multiple access (NOMA) based scheduling scheme which chooses a pair of users in each time slot for scheduling and we show that the opportunistic schemes outperform the NOMA-based scheme. We also derive a closed-form expression for the SOP of a decode-and-forward (DF) relay-aided scheduling scheme in order to compare it with that of the RIS-aided system. It is found that the RIS-aided system outperforms the relay-aided systems when the number of RIS elements is sufficiently large. An increased number of RIS elements is required to outperform the relay-aided system at higher operating frequencies.
In this paper, we address the intricate challenge of gaze vector prediction, a pivotal task with applications ranging from human-computer interaction to driver monitoring systems. Our innovative approach is designed for the demanding setting of extremely low-light conditions, leveraging a novel temporal event encoding scheme, and a dedicated neural network architecture. The temporal encoding method seamlessly integrates Dynamic Vision Sensor (DVS) events with grayscale guide frames, generating consecutively encoded images for input into our neural network. This unique solution not only captures diverse gaze responses from participants within the active age group but also introduces a curated dataset tailored for low-light conditions. The encoded temporal frames paired with our network showcase impressive spatial localization and reliable gaze direction in their predictions. Achieving a remarkable 100-pixel accuracy of 100%, our research underscores the potency of our neural network to work with temporally consecutive encoded images for precise gaze vector predictions in challenging low-light videos, contributing to the advancement of gaze prediction technologies.
Over the past few years, there has been remarkable progress in research on 3D point clouds and their use in autonomous driving scenarios has become widespread. However, deep learning methods heavily rely on annotated data and often face domain generalization issues. Unlike 2D images whose domains usually pertain to the texture information present in them, the features derived from a 3D point cloud are affected by the distribution of the points. The lack of a 3D domain adaptation benchmark leads to the common practice of training a model on one benchmark (e.g. Waymo) and then assessing it on another dataset (e.g. KITTI). This setting results in two distinct domain gaps: scenarios and sensors, making it difficult to analyze and evaluate the method accurately. To tackle this problem, this paper presents LiDAR Dataset with Cross Sensors (LiDAR-CS Dataset), which contains large-scale annotated LiDAR point cloud under six groups of different sensors but with the same corresponding scenarios, captured from hybrid realistic LiDAR simulator. To our knowledge, LiDAR-CS Dataset is the first dataset that addresses the sensor-related gaps in the domain of 3D object detection in real traffic. Furthermore, we evaluate and analyze the performance using various baseline detectors and demonstrated its potential applications. Project page: //opendriving.github.io/lidar-cs.
In this paper, we propose a cost-effective strategy for heterogeneous UAV swarm systems for cooperative aerial inspection. Unlike previous swarm inspection works, the proposed method does not rely on precise prior knowledge of the environment and can complete full 3D surface coverage of objects in any shape. In this work, agents are partitioned into teams, with each drone assign a different task, including mapping, exploration, and inspection. Task allocation is facilitated by assigning optimal inspection volumes to each team, following best-first rules. A voxel map-based representation of the environment is used for pathfinding, and a rule-based path-planning method is the core of this approach. We achieved the best performance in all challenging experiments with the proposed approach, surpassing all benchmark methods for similar tasks across multiple evaluation trials. The proposed method is open source at //github.com/ntu-aris/caric_baseline and used as the baseline of the Cooperative Aerial Robots Inspection Challenge at the 62nd IEEE Conference on Decision and Control 2023.
In this paper we provide a first-ever epistemic formulation of stabilizing agreement, defined as the non-terminating variant of the well established consensus problem. In stabilizing agreements, agents are given (possibly different) initial values, with the goal to eventually always decide on the same value. While agents are allowed to change their decisions finitely often, they are required to agree on the same value eventually. We capture these properties in temporal epistemic logic and we use the Runs and Systems framework to formally reason about stabilizing agreement problems. We then epistemically formalize the conditions for solving stabilizing agreement, and identify the knowledge that the agents acquire during any execution to choose a particular value under our system assumptions. This first formalization of a sufficient condition for solving stabilizing agreement sets the stage for a planned necessary and sufficient epistemic characterization of stabilizing agreement.
In this paper, we present a new computer-controlled weaving technology that enables the fabrication of woven structures in the shape of given 3D surfaces by using threads in non-traditional materials with high bending-stiffness, allowing for multiple applications with the resultant woven fabrics. A new weaving machine and a new manufacturing process are developed to realize the function of 3D surface weaving by the principle of short-row shaping. A computational solution is investigated to convert input 3D freeform surfaces into the corresponding weaving operations (indicated as W-code) to guide the operation of this system. A variety of examples using cotton threads, conductive threads and optical fibres are fabricated by our prototype system to demonstrate its functionality.
In this paper, we study the problem of optimal data collection for policy evaluation in linear bandits. In policy evaluation, we are given a target policy and asked to estimate the expected reward it will obtain when executed in a multi-armed bandit environment. Our work is the first work that focuses on such optimal data collection strategy for policy evaluation involving heteroscedastic reward noise in the linear bandit setting. We first formulate an optimal design for weighted least squares estimates in the heteroscedastic linear bandit setting that reduces the MSE of the value of the target policy. We then use this formulation to derive the optimal allocation of samples per action during data collection. We then introduce a novel algorithm SPEED (Structured Policy Evaluation Experimental Design) that tracks the optimal design and derive its regret with respect to the optimal design. Finally, we empirically validate that SPEED leads to policy evaluation with mean squared error comparable to the oracle strategy and significantly lower than simply running the target policy.
The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.