We study the approximation properties of complex-valued polynomial Trefftz spaces for the $(d+1)$-dimensional linear time-dependent Schr\"odinger equation. More precisely, we prove that for the space-time Trefftz discontinuous Galerkin variational formulation proposed by G\'omez, Moiola (SIAM. J. Num. Anal. 60(2): 688-714, 2022), the same $h$-convergence rates as for polynomials of degree $p$ in $(d + 1)$ variables can be obtained in a mesh-dependent norm by using a space of Trefftz polynomials of anisotropic degree. For such a space, the dimension is equal to that of the space of polynomials of degree $2p$ in $d$ variables, and bases are easily constructed.
Differential equation discovery, a machine learning subfield, is used to develop interpretable models, particularly in nature-related applications. By expertly incorporating the general parametric form of the equation of motion and appropriate differential terms, algorithms can autonomously uncover equations from data. This paper explores the prerequisites and tools for independent equation discovery without expert input, eliminating the need for equation form assumptions. We focus on addressing the challenge of assessing the adequacy of discovered equations when the correct equation is unknown, with the aim of providing insights for reliable equation discovery without prior knowledge of the equation form.
Ghost, or fictitious points allow to capture boundary conditions that are not located on the finite difference grid discretization. We explore in this paper the impact of ghost points on the stability of the explicit Euler finite difference scheme in the context of the diffusion equation. In particular, we consider the case of a one-touch option under the Black-Scholes model. The observations and results are however valid for a much wider range of financial contracts and models.
We present a space-time virtual element method for the discretization of the heat equation, which is defined on general prismatic meshes and variable degrees of accuracy. Strategies to handle efficiently the space-time mesh structure are discussed. We perform convergence tests for the $h$- and $hp$-versions of the method in case of smooth and singular solutions, and test space-time adaptive mesh refinements driven by a residual-type error indicator.
Positive linear programs (LPs) model many graph and operations research problems. One can solve for a $(1+\epsilon)$-approximation for positive LPs, for any selected $\epsilon$, in polylogarithmic depth and near-linear work via variations of the multiplicative weight update (MWU) method. Despite extensive theoretical work on these algorithms through the decades, their empirical performance is not well understood. In this work, we implement and test an efficient parallel algorithm for solving positive LP relaxations, and apply it to graph problems such as densest subgraph, bipartite matching, vertex cover and dominating set. We accelerate the algorithm via a new step size search heuristic. Our implementation uses sparse linear algebra optimization techniques such as fusion of vector operations and use of sparse format. Furthermore, we devise an implicit representation for graph incidence constraints. We demonstrate the parallel scalability with the use of threading OpenMP and MPI on the Stampede2 supercomputer. We compare this implementation with exact libraries and specialized libraries for the above problems in order to evaluate MWU's practical standing for both accuracy and performance among other methods. Our results show this implementation is faster than general purpose LP solvers (IBM CPLEX, Gurobi) in all of our experiments, and in some instances, outperforms state-of-the-art specialized parallel graph algorithms.
In this work, we solve inverse problems of nonlinear Schr\"{o}dinger equations that can be formulated as a learning process of a special convolutional neural network. Instead of attempting to approximate functions in the inverse problems, we embed a library as a low dimensional manifold in the network such that unknowns can be reduced to some scalars. The nonlinear Schr\"{o}dinger equation (NLSE) is $i\frac{\partial \psi}{\partial t}-\beta\frac{\partial^2 \psi}{\partial x^2}+\gamma|\psi|^2\psi+V(x)\psi=0,$ where the wave function $\psi(x,t)$ is the solution to the forward problem and the potential $V(x)$ is the quantity of interest of the inverse problem. The main contributions of this work come from two aspects. First, we construct a special neural network directly from the Schr\"{o}dinger equation, which is motivated by a splitting method. The physics behind the construction enhances explainability of the neural network. The other part is using a library-search algorithm to project the solution space of the inverse problem to a lower-dimensional space. The way to seek the solution in a reduced approximation space can be traced back to the compressed sensing theory. The motivation of this part is to alleviate the training burden in estimating functions. Instead, with a well-chosen library, one can greatly simplify the training process. A brief analysis is given, which focuses on well-possedness of some mentioned inverse problems and convergence of the neural network approximation. To show the effectiveness of the proposed method, we explore in some representative problems including simple equations and a couple equation. The results can well verify the theory part. In the future, we can further explore manifold learning to enhance the approximation effect of the library-search algorithm.
We design a monotone meshfree finite difference method for linear elliptic equations in the non-divergence form on point clouds via a nonlocal relaxation method. The key idea is a novel combination of a nonlocal integral relaxation of the PDE problem with a robust meshfree discretization on point clouds. Minimal positive stencils are obtained through a local $l_1$-type optimization procedure that automatically guarantees the stability and, therefore, the convergence of the meshfree discretization for linear elliptic equations. A major theoretical contribution is the existence of consistent and positive stencils for a given point cloud geometry. We provide sufficient conditions for the existence of positive stencils by finding neighbors within an ellipse (2d) or ellipsoid (3d) surrounding each interior point, generalizing the study for Poisson's equation by Seibold (Comput Methods Appl Mech Eng 198(3-4):592-601, 2008). It is well-known that wide stencils are in general needed for constructing consistent and monotone finite difference schemes for linear elliptic equations. Our result represents a significant improvement in the stencil width estimate for positive-type finite difference methods for linear elliptic equations in the near-degenerate regime (when the ellipticity constant becomes small), compared to previously known works in this area. Numerical algorithms and practical guidance are provided with an eye on the case of small ellipticity constant. At the end, we present numerical results for the performance of our method in both 2d and 3d, examining a range of ellipticity constants including the near-degenerate regime.
The power of Clifford or, geometric, algebra lies in its ability to represent geometric operations in a concise and elegant manner. Clifford algebras provide the natural generalizations of complex, dual numbers and quaternions into non-commutative multivectors. The paper demonstrates an algorithm for the computation of inverses of such numbers in a non-degenerate Clifford algebra of an arbitrary dimension. The algorithm is a variation of the Faddeev-LeVerrier-Souriau algorithm and is implemented in the open-source Computer Algebra System Maxima. Symbolic and numerical examples in different Clifford algebras are presented.
We prove lower bounds for the randomized approximation of the embedding $\ell_1^m \rightarrow \ell_\infty^m$ based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix $N \in \mathbb{R}^{n \times m}$. These lower bounds reflect the increasing difficulty of the problem for $m \to \infty$, namely, a term $\sqrt{\log m}$ in the complexity $n$. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity $n$ only exhibits a $(\log\log m)$-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order $n^{1/2} ( \log n)^{-1/2}$.
This work focuses on solving super-linear stochastic differential equations (SDEs) involving different time scales numerically. Taking advantages of being explicit and easily implementable, a multiscale truncated Euler-Maruyama scheme is proposed for slow-fast SDEs with local Lipschitz coefficients. By virtue of the averaging principle, the strong convergence of its numerical solutions to the exact ones in pth moment is obtained. Furthermore, under mild conditions on the coefficients, the corresponding strong error estimate is also provided. Finally, two examples and some numerical simulations are given to verify the theoretical results.
This paper concerns an expansion of first-order Belnap-Dunn logic which is called $\mathrm{BD}^{\supset,\mathsf{F}}$. Its connectives and quantifiers are all familiar from classical logic and its logical consequence relation is very closely connected to the one of classical logic. Results that convey this close connection are established. Fifteen classical laws of logical equivalence are used to distinguish $\mathrm{BD}^{\supset,\mathsf{F}}$ from all other four-valued logics with the same connectives and quantifiers whose logical consequence relation is as closely connected to the logical consequence relation of classical logic. It is shown that several interesting non-classical connectives added to Belnap-Dunn logic in its expansions that have been studied earlier are definable in $\mathrm{BD}^{\supset,\mathsf{F}}$. It is also established that $\mathrm{BD}^{\supset,\mathsf{F}}$ is both paraconsistent and paracomplete. Moreover, a sequent calculus proof system that is sound and complete with respect to the logical consequence relation of $\mathrm{BD}^{\supset,\mathsf{F}}$ is presented.