In this work, we solve inverse problems of nonlinear Schr\"{o}dinger equations that can be formulated as a learning process of a special convolutional neural network. Instead of attempting to approximate functions in the inverse problems, we embed a library as a low dimensional manifold in the network such that unknowns can be reduced to some scalars. The nonlinear Schr\"{o}dinger equation (NLSE) is $i\frac{\partial \psi}{\partial t}-\beta\frac{\partial^2 \psi}{\partial x^2}+\gamma|\psi|^2\psi+V(x)\psi=0,$ where the wave function $\psi(x,t)$ is the solution to the forward problem and the potential $V(x)$ is the quantity of interest of the inverse problem. The main contributions of this work come from two aspects. First, we construct a special neural network directly from the Schr\"{o}dinger equation, which is motivated by a splitting method. The physics behind the construction enhances explainability of the neural network. The other part is using a library-search algorithm to project the solution space of the inverse problem to a lower-dimensional space. The way to seek the solution in a reduced approximation space can be traced back to the compressed sensing theory. The motivation of this part is to alleviate the training burden in estimating functions. Instead, with a well-chosen library, one can greatly simplify the training process. A brief analysis is given, which focuses on well-possedness of some mentioned inverse problems and convergence of the neural network approximation. To show the effectiveness of the proposed method, we explore in some representative problems including simple equations and a couple equation. The results can well verify the theory part. In the future, we can further explore manifold learning to enhance the approximation effect of the library-search algorithm.
In the area of query complexity of Boolean functions, the most widely studied cost measure of an algorithm is the worst-case number of queries made by it on an input. Motivated by the most natural cost measure studied in online algorithms, the competitive ratio, we consider a different cost measure for query algorithms for Boolean functions that captures the ratio of the cost of the algorithm and the cost of an optimal algorithm that knows the input in advance. The cost of an algorithm is its largest cost over all inputs. Grossman, Komargodski and Naor [ITCS'20] introduced this measure for Boolean functions, and dubbed it instance complexity. Grossman et al. showed, among other results, that monotone Boolean functions with instance complexity 1 are precisely those that depend on one or two variables. We complement the above-mentioned result of Grossman et al. by completely characterizing the instance complexity of symmetric Boolean functions. As a corollary we conclude that the only symmetric Boolean functions with instance complexity 1 are the Parity function and its complement. We also study the instance complexity of some graph properties like Connectivity and k-clique containment. In all the Boolean functions we study above, and those studied by Grossman et al., the instance complexity turns out to be the ratio of query complexity to minimum certificate complexity. It is a natural question to ask if this is the correct bound for all Boolean functions. We show a negative answer in a very strong sense, by analyzing the instance complexity of the Greater-Than and Odd-Max-Bit functions. We show that the above-mentioned ratio is linear in the input size for both of these functions, while we exhibit algorithms for which the instance complexity is a constant.
In this work we propose and analyze an extension of the approximate component mode synthesis (ACMS) method to the heterogeneous Helmholtz equation. The ACMS method has originally been introduced by Hetmaniuk and Lehoucq as a multiscale method to solve elliptic partial differential equations. The ACMS method uses a domain decomposition to separate the numerical approximation by splitting the variational problem into two independent parts: local Helmholtz problems and a global interface problem. While the former are naturally local and decoupled such that they can be easily solved in parallel, the latter requires the construction of suitable local basis functions relying on local eigenmodes and suitable extensions. We carry out a full error analysis of this approach focusing on the case where the domain decomposition is kept fixed, but the number of eigenfunctions is increased. The theoretical results in this work are supported by numerical experiments verifying algebraic convergence for the method. In certain, practically relevant cases, even exponential convergence for the local Helmholtz problems can be achieved without oversampling.
Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry, gave suboptimal conditions for existence of solutions and proposed an $H^2$-conformal finite element method to approximate them. In this paper, the existence of Miura surfaces is studied using a mixed formulation. It is also proved that the constraints propagate from the boundary to the interior of the domain for well-chosen boundary conditions. Then, a numerical method based on a least-squares formulation, Taylor--Hood finite elements and a Newton method is introduced to approximate Miura surfaces. The numerical method is proved to converge at order one in space and numerical tests are performed to demonstrate its robustness.
We analyze the conforming approximation of the time-harmonic Maxwell's equations using N\'ed\'elec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy norm is bounded by the best-approximation error times a constant that tends to one as the mesh is refined and/or the polynomial degree is increased. Moreover, under the same conditions on the mesh and/or the polynomial degree, we establish discrete inf-sup stability with a constant that corresponds to the continuous constant up to a factor of two at most. Our proofs apply under minimal regularity assumptions on the exact solution, so that general domains, material coefficients, and right-hand sides are allowed.
We present a method for computing nearly singular integrals that occur when single or double layer surface integrals, for harmonic potentials or Stokes flow, are evaluated at points nearby. Such values could be needed in solving an integral equation when one surface is close to another or to obtain values at grid points. We replace the singular kernel with a regularized version having a length parameter $\delta$ in order to control discretization error. Analysis near the singularity leads to an expression for the error due to regularization which has terms with unknown coefficients multiplying known quantities. By computing the integral with three choices of $\delta$ we can solve for an extrapolated value that has regularization error reduced to $O(\delta^5)$. In examples with $\delta/h$ constant and moderate resolution we observe total error about $O(h^5)$. For convergence as $h \to 0$ we can choose $\delta$ proportional to $h^q$ with $q < 1$ to ensure the discretization error is dominated by the regularization error. With $q = 4/5$ we find errors about $O(h^4)$. For harmonic potentials we extend the approach to a version with $O(\delta^7)$ regularization; it typically has smaller errors but the order of accuracy is less predictable.
When a system of first order linear ordinary differential equations has eigenvalues of large magnitude, its solutions exhibit complicated behaviour, such as high-frequency oscillations, rapid growth or rapid decay. The cost of representing such solutions using standard techniques typically grows with the magnitudes of the eigenvalues. As a consequence, the running times of standard solvers for ordinary differential equations also grow with the size of these eigenvalues. The solutions of scalar equations with slowly-varying coefficients, however, can be efficiently represented via slowly-varying phase functions, regardless of the magnitudes of the eigenvalues of the corresponding coefficient matrix. Here, we couple an existing solver for scalar equations which exploits this observation with a well-known technique for transforming a system of linear ordinary differential equations into scalar form. The result is a method for solving a large class of systems of linear ordinary differential equations in time independent of the magnitudes of the eigenvalues of their coefficient matrices. We discuss the results of numerical experiments demonstrating the properties of our algorithm.
We present here a new splitting method to solve Lyapunov equations of the type $AP + PA^T=-BB^T$ in a Kronecker product form. Although that resulting matrix is of order $n^2$, each iteration of the method demands only two operations with the matrix $A$: a multiplication of the form $(A-\sigma I) \hat{B}$ and a inversion of the form $(A-\sigma I)^{-1}\hat{B}$. We see that for some choice of a parameter the iteration matrix is such that all their eigenvalues are in absolute value less than 1, which means that it should converge without depending on the starting vector. Nevertheless we present a theorem that enables us how to get a good starting vector for the method.
In this paper we revisit the classical Cauchy problem for Laplace's equation as well as two further related problems in the light of regularisation of this highly ill-conditioned problem by replacing integer derivatives with fractional ones. We do so in the spirit of quasi reversibility, replacing a classically severely ill-posed PDE problem by a nearby well-posed or only mildly ill-posed one. In order to be able to make use of the known stabilising effect of one-dimensional fractional derivatives of Abel type we work in a particular rectangular (in higher space dimensions cylindrical) geometry. We start with the plain Cauchy problem of reconstructing the values of a harmonic function inside this domain from its Dirichlet and Neumann trace on part of the boundary (the cylinder base) and explore three options for doing this with fractional operators. The two other related problems are the recovery of a free boundary and then this together with simultaneous recovery of the impedance function in the boundary condition. Our main technique here will be Newton's method. The paper contains numerical reconstructions and convergence results for the devised methods.
It is known that difference equations generated as the Newton-Raphson iteration for quadratic equations are solvable in closed form, and the solution can be constructed from linear three-term recurrence relations with constant coefficients. We show that the same construction for four-term recurrence relations gives the solution to the initial value problem of difference equations similar to the Newton-Raphson iteration for cubic equations. In many cases, the solution converges to a root of the cubic equation and the convergence rate is quadratic.
In this paper, a high-order approximation to Caputo-type time-fractional diffusion equations involving an initial-time singularity of the solution is proposed. At first, we employ a numerical algorithm based on the Lagrange polynomial interpolation to approximate the Caputo derivative on the non-uniform mesh. Then truncation error rate and the optimal grading constant of the approximation on a graded mesh are obtained as $\min\{4-\alpha,r\alpha\}$ and $\frac{4-\alpha}{\alpha}$, respectively, where $\alpha\in(0,1)$ is the order of fractional derivative and $r\geq 1$ is the mesh grading parameter. Using this new approximation, a difference scheme for the Caputo-type time-fractional diffusion equation on graded temporal mesh is formulated. The scheme proves to be uniquely solvable for general $r$. Then we derive the unconditional stability of the scheme on uniform mesh. The convergence of the scheme, in particular for $r=1$, is analyzed for non-smooth solutions and concluded for smooth solutions. Finally, the accuracy of the scheme is verified by analyzing the error through a few numerical examples.