In this paper, we present a distributed optimal multiagent control scheme for quadrotor formation tracking under localization errors. Our control architecture is based on a leader-follower approach, where a single leader quadrotor tracks a desired trajectory while the followers maintain their relative positions in a triangular formation. We begin by modeling the quadrotors as particles in the YZ-plane evolving under dynamics with uncertain state information. Next, by formulating the formation tracking task as an optimization problem -- with a constraint-augmented Lagrangian subject to dynamic constraints -- we solve for the control law that leads to an optimal solution in the control and trajectory error cost-minimizing sense. Results from numerical simulations show that for the planar quadrotor model considered -- with uncertainty in sensor measurements modeled as Gaussian noise -- the resulting optimal control is able to drive each agent to achieve the desired global objective: leader trajectory tracking with formation maintenance. Finally, we evaluate the performance of the control law using the tracking and formation errors of the multiagent system.
This paper investigates deceptive reinforcement learning for privacy preservation in model-free and continuous action space domains. In reinforcement learning, the reward function defines the agent's objective. In adversarial scenarios, an agent may need to both maximise rewards and keep its reward function private from observers. Recent research presented the ambiguity model (AM), which selects actions that are ambiguous over a set of possible reward functions, via pre-trained $Q$-functions. Despite promising results in model-based domains, our investigation shows that AM is ineffective in model-free domains due to misdirected state space exploration. It is also inefficient to train and inapplicable in continuous action space domains. We propose the deceptive exploration ambiguity model (DEAM), which learns using the deceptive policy during training, leading to targeted exploration of the state space. DEAM is also applicable in continuous action spaces. We evaluate DEAM in discrete and continuous action space path planning environments. DEAM achieves similar performance to an optimal model-based version of AM and outperforms a model-free version of AM in terms of path cost, deceptiveness and training efficiency. These results extend to the continuous domain.
Future astronauts living and working on the Moon will face extreme environmental conditions impeding their operational safety and performance. While it has been suggested that Augmented Reality (AR) Head-Up Displays (HUDs) could potentially help mitigate some of these adversities, the applicability of AR in the unique lunar context remains underexplored. To address this limitation, we have produced an accurate representation of the lunar setting in virtual reality (VR) which then formed our testbed for the exploration of prospective operational scenarios with aerospace experts. Herein we present findings based on qualitative reflections made by the first 6 study participants. AR was found instrumental in several use cases, including the support of navigation and risk awareness. Major design challenges were likewise identified, including the importance of redundancy and contextual appropriateness. Drawing on these findings, we conclude by outlining directions for future research aimed at developing AR-based assistive solutions tailored to the lunar setting.
This paper is dedicated to achieving scalable relative state estimation using inter-robot Euclidean distance measurements. We consider equipping robots with distance sensors and focus on the optimization problem underlying relative state estimation in this setup. We reveal the commonality between this problem and the coordinates realization problem of a sensor network. Based on this insight, we propose an effective unconstrained optimization model to infer the relative states among robots. To work on this model in a distributed manner, we propose an efficient and scalable optimization algorithm with the classical block coordinate descent method as its backbone. This algorithm exactly solves each block update subproblem with a closed-form solution while ensuring convergence. Our results pave the way for distance measurements-based relative state estimation in large-scale multi-robot systems.
Generalised hyperbolic (GH) processes are a class of stochastic processes that are used to model the dynamics of a wide range of complex systems that exhibit heavy-tailed behavior, including systems in finance, economics, biology, and physics. In this paper, we present novel simulation methods based on subordination with a generalised inverse Gaussian (GIG) process and using a generalised shot-noise representation that involves random thinning of infinite series of decreasing jump sizes. Compared with our previous work on GIG processes, we provide tighter bounds for the construction of rejection sampling ratios, leading to improved acceptance probabilities in simulation. Furthermore, we derive methods for the adaptive determination of the number of points required in the associated random series using concentration inequalities. Residual small jumps are then approximated using an appropriately scaled Brownian motion term with drift. Finally the rejection sampling steps are made significantly more computationally efficient through the use of squeezing functions based on lower and upper bounds on the L\'evy density. Experimental results are presented illustrating the strong performance under various parameter settings and comparing the marginal distribution of the GH paths with exact simulations of GH random variates. The new simulation methodology is made available to researchers through the publication of a Python code repository.
This paper focuses on multi-user downlink signal transmission in a wireless system aided by multiple reconfigurable intelligent surfaces (RISs). In such a multi-RIS, multi-user, multi-antenna scenario, determining a set of RIS phase shifts to maximize the sum throughput becomes intractable. Hence, we propose a novel scheme that can substantially simplify the optimization of passive beamforming. By opportunistically selecting a user with the best channel condition as the only active transmitter in the system, it degrades to single-user passive beamforming, where two methods, i.e., joint optimization based on the semidefinite relaxation approach and alternating optimization, are applicable. The superiority of the proposed scheme is demonstrated through Monte-Carlo simulations.
We present a multisensor fusion framework for the onboard real-time navigation of a quadrotor in an indoor environment. The framework integrates sensor readings from an Inertial Measurement Unit (IMU), a camera-based object detection algorithm, and an Ultra-WideBand (UWB) localisation system. Often the sensor readings are not always readily available, leading to inaccurate pose estimation and hence poor navigation performance. To effectively handle and fuse sensor readings, and accurately estimate the pose of the quadrotor for tracking a predefined trajectory, we design a Maximum Correntropy Criterion Kalman Filter (MCC-KF) that can manage intermittent observations. The MCC-KF is designed to improve the performance of the estimation process when is done with a Kalman Filter (KF), since KFs are likely to degrade dramatically in practical scenarios in which noise is non-Gaussian (especially when the noise is heavy-tailed). To evaluate the performance of the MCC-KF, we compare it with a previously designed Kalman filter by the authors. Through this comparison, we aim to demonstrate the effectiveness of the MCC-KF in handling indoor navigation missions. The simulation results show that our presented framework offers low positioning errors, while effectively handling intermittent sensor measurements.
This paper explores continuous-time control synthesis for target-driven navigation to satisfy complex high-level tasks expressed as linear temporal logic (LTL). We propose a model-free framework using deep reinforcement learning (DRL) where the underlying dynamic system is unknown (an opaque box). Unlike prior work, this paper considers scenarios where the given LTL specification might be infeasible and therefore cannot be accomplished globally. Instead of modifying the given LTL formula, we provide a general DRL-based approach to satisfy it with minimal violation. To do this, we transform a previously multi-objective DRL problem, which requires simultaneous automata satisfaction and minimum violation cost, into a single objective. By guiding the DRL agent with a sampling-based path planning algorithm for the potentially infeasible LTL task, the proposed approach mitigates the myopic tendencies of DRL, which are often an issue when learning general LTL tasks that can have long or infinite horizons. This is achieved by decomposing an infeasible LTL formula into several reach-avoid sub-tasks with shorter horizons, which can be trained in a modular DRL architecture. Furthermore, we overcome the challenge of the exploration process for DRL in complex and cluttered environments by using path planners to design rewards that are dense in the configuration space. The benefits of the presented approach are demonstrated through testing on various complex nonlinear systems and compared with state-of-the-art baselines. The Video demonstration can be found here://youtu.be/jBhx6Nv224E.
This paper considers enforcing safety and stability of dynamical systems in the presence of model uncertainty. Safety and stability constraints may be specified using a control barrier function (CBF) and a control Lyapunov function (CLF), respectively. To take model uncertainty into account, robust and chance formulations of the constraints are commonly considered. However, this requires known error bounds or a known distribution for the model uncertainty, and the resulting formulations may suffer from over-conservatism or over-confidence. In this paper, we assume that only a finite set of model parametric uncertainty samples is available and formulate a distributionally robust chance-constrained program (DRCCP) for control synthesis with CBF safety and CLF stability guarantees. To facilitate efficient computation of control inputs during online execution, we present a reformulation of the DRCCP as a second-order cone program (SOCP). Our formulation is evaluated in an adaptive cruise control example in comparison to 1) a baseline CLF-CBF quadratic programming approach, 2) a robust approach that assumes known error bounds of the system uncertainty, and 3) a chance-constrained approach that assumes a known Gaussian Process distribution of the uncertainty.
We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.