Generalised hyperbolic (GH) processes are a class of stochastic processes that are used to model the dynamics of a wide range of complex systems that exhibit heavy-tailed behavior, including systems in finance, economics, biology, and physics. In this paper, we present novel simulation methods based on subordination with a generalised inverse Gaussian (GIG) process and using a generalised shot-noise representation that involves random thinning of infinite series of decreasing jump sizes. Compared with our previous work on GIG processes, we provide tighter bounds for the construction of rejection sampling ratios, leading to improved acceptance probabilities in simulation. Furthermore, we derive methods for the adaptive determination of the number of points required in the associated random series using concentration inequalities. Residual small jumps are then approximated using an appropriately scaled Brownian motion term with drift. Finally the rejection sampling steps are made significantly more computationally efficient through the use of squeezing functions based on lower and upper bounds on the L\'evy density. Experimental results are presented illustrating the strong performance under various parameter settings and comparing the marginal distribution of the GH paths with exact simulations of GH random variates. The new simulation methodology is made available to researchers through the publication of a Python code repository.
In robotics, simulation has the potential to reduce design time and costs, and lead to a more robust engineered solution and a safer development process. However, the use of simulators is predicated on the availability of good models. This contribution is concerned with improving the quality of these models via calibration, which is cast herein in a Bayesian framework. First, we discuss the Bayesian machinery involved in model calibration. Then, we demonstrate it in one example: calibration of a vehicle dynamics model that has low degree of freedom count and can be used for state estimation, model predictive control, or path planning. A high fidelity simulator is used to emulate the ``experiments'' and generate the data for the calibration. The merit of this work is not tied to a new Bayesian methodology for calibration, but to the demonstration of how the Bayesian machinery can establish connections among models in computational dynamics, even when the data in use is noisy. The software used to generate the results reported herein is available in a public repository for unfettered use and distribution.
The Dirichlet process has been pivotal to the development of Bayesian nonparametrics, allowing one to learn the law of the observations through closed-form expressions. Still, its learning mechanism is often too simplistic and many generalizations have been proposed to increase its flexibility, a popular one being the class of normalized completely random measures. Here we investigate a simple yet fundamental matter: will a different prior actually guarantee a different learning outcome? To this end, we develop a new framework for assessing the merging rate of opinions based on three leading pillars: i) the investigation of identifiability of completely random measures; ii) the measurement of their discrepancy through a novel optimal transport distance; iii) the establishment of general techniques to conduct posterior analyses, unravelling both finite-sample and asymptotic behaviour of the distance as the number of observations grows. Our findings provide neat and interpretable insights on the impact of popular Bayesian nonparametric priors, avoiding the usual restrictive assumptions on the data-generating process.
We consider the problem of obtaining effective representations for the solutions of linear, vector-valued stochastic differential equations (SDEs) driven by non-Gaussian pure-jump L\'evy processes, and we show how such representations lead to efficient simulation methods. The processes considered constitute a broad class of models that find application across the physical and biological sciences, mathematics, finance and engineering. Motivated by important relevant problems in statistical inference, we derive new, generalised shot-noise simulation methods whenever a normal variance-mean (NVM) mixture representation exists for the driving L\'evy process, including the generalised hyperbolic, normal-Gamma, and normal tempered stable cases. Simple, explicit conditions are identified for the convergence of the residual of a truncated shot-noise representation to a Brownian motion in the case of the pure L\'evy process, and to a Brownian-driven SDE in the case of the L\'evy-driven SDE. These results provide Gaussian approximations to the small jumps of the process under the NVM representation. The resulting representations are of particular importance in state inference and parameter estimation for L\'evy-driven SDE models, since the resulting conditionally Gaussian structures can be readily incorporated into latent variable inference methods such as Markov chain Monte Carlo (MCMC), Expectation-Maximisation (EM), and sequential Monte Carlo.
We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCT) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g. unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted adaptive power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.
Reinforcement learning on high-dimensional and complex problems relies on abstraction for improved efficiency and generalization. In this paper, we study abstraction in the continuous-control setting, and extend the definition of MDP homomorphisms to the setting of continuous state and action spaces. We derive a policy gradient theorem on the abstract MDP for both stochastic and deterministic policies. Our policy gradient results allow for leveraging approximate symmetries of the environment for policy optimization. Based on these theorems, we propose a family of actor-critic algorithms that are able to learn the policy and the MDP homomorphism map simultaneously, using the lax bisimulation metric. Finally, we introduce a series of environments with continuous symmetries to further demonstrate the ability of our algorithm for action abstraction in the presence of such symmetries. We demonstrate the effectiveness of our method on our environments, as well as on challenging visual control tasks from the DeepMind Control Suite. Our method's ability to utilize MDP homomorphisms for representation learning leads to improved performance, and the visualizations of the latent space clearly demonstrate the structure of the learned abstraction.
Reinforcement learning (RL) problems over general state and action spaces are notoriously challenging. In contrast to the tableau setting, one can not enumerate all the states and then iteratively update the policies for each state. This prevents the application of many well-studied RL methods especially those with provable convergence guarantees. In this paper, we first present a substantial generalization of the recently developed policy mirror descent method to deal with general state and action spaces. We introduce new approaches to incorporate function approximation into this method, so that we do not need to use explicit policy parameterization at all. Moreover, we present a novel policy dual averaging method for which possibly simpler function approximation techniques can be applied. We establish linear convergence rate to global optimality or sublinear convergence to stationarity for these methods applied to solve different classes of RL problems under exact policy evaluation. We then define proper notions of the approximation errors for policy evaluation and investigate their impact on the convergence of these methods applied to general-state RL problems with either finite-action or continuous-action spaces. To the best of our knowledge, the development of these algorithmic frameworks as well as their convergence analysis appear to be new in the literature.
Forecast reconciliation is the post-forecasting process aimed to revise a set of incoherent base forecasts into coherent forecasts in line with given data structures. Most of the point and probabilistic regression-based forecast reconciliation results ground on the so called "structural representation" and on the related unconstrained generalized least squares reconciliation formula. However, the structural representation naturally applies to genuine hierarchical/grouped time series, where the top- and bottom-level variables are uniquely identified. When a general linearly constrained multiple time series is considered, the forecast reconciliation is naturally expressed according to a projection approach. While it is well known that the classic structural reconciliation formula is equivalent to its projection approach counterpart, so far it is not completely understood if and how a structural-like reconciliation formula may be derived for a general linearly constrained multiple time series. Such an expression would permit to extend reconciliation definitions, theorems and results in a straightforward manner. In this paper, we show that for general linearly constrained multiple time series it is possible to express the reconciliation formula according to a "structural-like" approach that keeps distinct free and constrained, instead of bottom and upper (aggregated), variables, establish the probabilistic forecast reconciliation framework, and apply these findings to obtain fully reconciled point and probabilistic forecasts for the aggregates of the Australian GDP from income and expenditure sides, and for the European Area GDP disaggregated by income, expenditure and output sides and by 19 countries.
Discovering causal relations from observational data is important. The existence of unobserved variables (e.g. latent confounding or mediation) can mislead the causal identification. To overcome this problem, proximal causal discovery methods attempted to adjust for the bias via the proxy of the unobserved variable. Particularly, hypothesis test-based methods proposed to identify the causal edge by testing the induced violation of linearity. However, these methods only apply to discrete data with strict level constraints, which limits their practice in the real world. In this paper, we fix this problem by extending the proximal hypothesis test to cases where the system consists of continuous variables. Our strategy is to present regularity conditions on the conditional distributions of the observed variables given the hidden factor, such that if we discretize its observed proxy with sufficiently fine, finite bins, the involved discretization error can be effectively controlled. Based on this, we can convert the problem of testing continuous causal relations to that of testing discrete causal relations in each bin, which can be effectively solved with existing methods. These non-parametric regularities we present are mild and can be satisfied by a wide range of structural causal models. Using both simulated and real-world data, we show the effectiveness of our method in recovering causal relations when unobserved variables exist.
We investigate random processes for generating task-dependency graphs of order $n$ with $m$ edges and a specified number of initial vertices and terminal vertices. In order to do so, we consider two random processes for generating task-dependency graphs that can be combined to accomplish this task. In the $(x, y)$ edge-removal process, we start with a maximally connected task-dependency graph and remove edges uniformly at random as long as they do not cause the number of initial vertices to exceed $x$ or the number of terminal vertices to exceed $y$. In the $(x, y)$ edge-addition process, we start with an empty task-dependency graph and add edges uniformly at random as long as they do not cause the number of initial vertices to be less than $x$ or the number of terminal vertices to be less than $y$. In the $(x, y)$ edge-addition process, we halt if there are exactly $x$ initial vertices and $y$ terminal vertices. For both processes, we determine the values of $x$ and $y$ for which the resulting task-dependency graph is guaranteed to have exactly $x$ initial vertices and $y$ terminal vertices, and we also find the extremal values for the number of edges in the resulting task-dependency graphs as a function of $x$, $y$, and the number of vertices. Furthermore, we asymptotically bound the expected number of edges in the resulting task-dependency graphs. Finally, we define a random process using only edge-addition and edge-removal, and we show that with high probability this random process generates an $(x, y)$ task-dependency graph of order $n$ with $m$ edges.
We propose a novel sparse sliced inverse regression method based on random projections in a large $p$ small $n$ setting. Embedded in a generalized eigenvalue framework, the proposed approach finally reduces to parallel execution of low-dimensional (generalized) eigenvalue decompositions, which facilitates high computational efficiency. Theoretically, we prove that this method achieves the minimax optimal rate of convergence under suitable assumptions. Furthermore, our algorithm involves a delicate reweighting scheme, which can significantly enhance the identifiability of the active set of covariates. Extensive numerical studies demonstrate high superiority of the proposed algorithm in comparison to competing methods.