亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel approach to the parallelization of the parabolic fast multipole method for a space-time boundary element method for the heat equation. We exploit the special temporal structure of the involved operators to provide an efficient distributed parallelization with respect to time and with a one-directional communication pattern. On top, we apply a task-based shared memory parallelization and SIMD vectorization. In the numerical tests we observe high efficiencies of our parallelization approach.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和(he)存儲(chu)技(ji)術會(hui)議。 Publisher:USENIX。 SIT:

Understanding dynamics in complex systems is challenging because there are many degrees of freedom, and those that are most important for describing events of interest are often not obvious. The leading eigenfunctions of the transition operator are useful for visualization, and they can provide an efficient basis for computing statistics such as the likelihood and average time of events (predictions). Here we develop inexact iterative linear algebra methods for computing these eigenfunctions (spectral estimation) and making predictions from a data set of short trajectories sampled at finite intervals. We demonstrate the methods on a low-dimensional model that facilitates visualization and a high-dimensional model of a biomolecular system. Implications for the prediction problem in reinforcement learning are discussed.

We present efficient computational solutions to the problems of checking equality, performing multiplication, and computing minimal representatives of elements of free bands. A band is any semigroup satisfying the identity $x ^ 2 \approx x$ and the free band $\operatorname{FB}(k)$ is the free object in the variety of $k$-generated bands. Radoszewski and Rytter developed a linear time algorithm for checking whether two words represent the same element of a free band. In this paper we describe an alternate linear time algorithm for checking the same problem. The algorithm we present utilises a representation of words as synchronous deterministic transducers that lend themselves to efficient (quadratic in the size of the alphabet) multiplication in the free band. This representation also provides a means of finding the short-lex least word representing a given free band element with quadratic complexity.

Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the phi-FEM paradigm, which supposes that the domain is given by a level-set function. In this paper, we prove a priori error estimates in l2(H1) and linf(L2) norms for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of phi-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.

The paper focuses on a new error analysis of a class of mixed FEMs for stationary incompressible magnetohydrodynamics with the standard inf-sup stable velocity-pressure space pairs to Navier-Stokes equations and the N\'ed\'elec's edge element for the magnetic field. The methods have been widely used in various numerical simulations in the last several decades, while the existing analysis is not optimal due to the strong coupling of system and the pollution of the lower-order N\'ed\'elec's edge approximation in analysis. In terms of a newly modified Maxwell projection we establish new and optimal error estimates. In particular, we prove that the method based on the commonly-used Taylor-Hood/lowest-order N\'ed\'elec's edge element is efficient and the method provides the second-order accuracy for numerical velocity. Two numerical examples for the problem in both convex and nonconvex polygonal domains are presented. Numerical results confirm our theoretical analysis.

Hierarchical learning algorithms that gradually approximate a solution to a data-driven optimization problem are essential to decision-making systems, especially under limitations on time and computational resources. In this study, we introduce a general-purpose hierarchical learning architecture that is based on the progressive partitioning of a possibly multi-resolution data space. The optimal partition is gradually approximated by solving a sequence of optimization sub-problems that yield a sequence of partitions with increasing number of subsets. We show that the solution of each optimization problem can be estimated online using gradient-free stochastic approximation updates. As a consequence, a function approximation problem can be defined within each subset of the partition and solved using the theory of two-timescale stochastic approximation algorithms. This simulates an annealing process and defines a robust and interpretable heuristic method to gradually increase the complexity of the learning architecture in a task-agnostic manner, giving emphasis to regions of the data space that are considered more important according to a predefined criterion. Finally, by imposing a tree structure in the progression of the partitions, we provide a means to incorporate potential multi-resolution structure of the data space into this approach, significantly reducing its complexity, while introducing hierarchical variable-rate feature extraction properties similar to certain classes of deep learning architectures. Asymptotic convergence analysis and experimental results are provided for supervised and unsupervised learning problems.

Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-dominated problems. Here we analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-time (MGRIT) for discretizations of constant-wave-speed linear advection problems. We focus on common method-of-lines discretizations that employ upwind finite differences in space and Runge-Kutta methods in time. Using a convergence framework we developed in previous work, we prove for a subclass of these discretizations that, if using the standard approach of rediscretizing the fine-grid problem on the coarse grid, robust MGRIT convergence with respect to CFL number and coarsening factor is not possible. This poor convergence and non-robustness is caused, at least in part, by an inadequate coarse-grid correction for smooth Fourier modes known as characteristic components.We propose an alternative coarse-grid that provides a better correction of these modes. This coarse-grid operator is related to previous work and uses a semi-Lagrangian discretization combined with an implicitly treated truncation error correction. Theory and numerical experiments show the coarse-grid operator yields fast MGRIT convergence for many of the method-of-lines discretizations considered, including for both implicit and explicit discretizations of high order. Parallel results demonstrate substantial speed-up over sequential time-stepping.

We analyze the preservation properties of a family of reversible splitting methods when they are applied to the numerical time integration of linear differential equations defined in the unitary group. The schemes involve complex coefficients and are conjugated to unitary transformations for sufficiently small values of the time step-size. New and efficient methods up to order six are constructed and tested on the linear Schr\"odinger equation.

We propose an alternating direction method of multipliers (ADMM) to solve an optimization problem stemming from inverse lithography. The objective functional of the optimization problem includes three terms: the misfit between the imaging on wafer and the target pattern, the penalty term which ensures the mask is binary and the total variation regularization term. By variable splitting, we introduce an augmented Lagrangian for the original objective functional. In the framework of ADMM method, the optimization problem is divided into several subproblems. Each of the subproblems can be solved efficiently. We give the convergence analysis of the proposed method. Specially, instead of solving the subproblem concerning sigmoid, we solve directly the threshold truncation imaging function which can be solved analytically. We also provide many numerical examples to illustrate the effectiveness of the method.

Generalised hyperbolic (GH) processes are a class of stochastic processes that are used to model the dynamics of a wide range of complex systems that exhibit heavy-tailed behavior, including systems in finance, economics, biology, and physics. In this paper, we present novel simulation methods based on subordination with a generalised inverse Gaussian (GIG) process and using a generalised shot-noise representation that involves random thinning of infinite series of decreasing jump sizes. Compared with our previous work on GIG processes, we provide tighter bounds for the construction of rejection sampling ratios, leading to improved acceptance probabilities in simulation. Furthermore, we derive methods for the adaptive determination of the number of points required in the associated random series using concentration inequalities. Residual small jumps are then approximated using an appropriately scaled Brownian motion term with drift. Finally the rejection sampling steps are made significantly more computationally efficient through the use of squeezing functions based on lower and upper bounds on the L\'evy density. Experimental results are presented illustrating the strong performance under various parameter settings and comparing the marginal distribution of the GH paths with exact simulations of GH random variates. The new simulation methodology is made available to researchers through the publication of a Python code repository.

In this paper, we focus on high-order space-time isogeometric discretizations of the linear acoustic wave equation. We deal with smooth approximations in both space and time by employing high-order B-splines of general degree $p$. By exploiting a suitably defined perturbation of order $2p$, we devise a high-order unconditionally stable space-time isogeometric method given by a non-consistent isogeometric formulation. To illustrate the effectiveness of this stabilized isogeometric method, we perform several numerical experiments.

北京阿比特科技有限公司