Theoretical background is provided towards the mathematical foundation of the minimum enclosing ball problem. This problem concerns the determination of the unique spherical surface of smallest radius enclosing a given bounded set in the d-dimensional Euclidean space. The study of several problems that are similar or related to the minimum enclosing ball problem has received a considerable impetus from the large amount of applications of these problems in various fields of science and technology. The proposed theoretical framework is based on several enclosing (covering) and partitioning (clustering) theorems and provides among others bounds and relations between the circumradius, inradius, diameter and width of a set. These enclosing and partitioning theorems are considered as cornerstones in the field that strongly influencing developments and generalizations to other spaces and non-Euclidean geometries.
We consider a discrete best approximation problem formulated in the framework of tropical algebra, which deals with the theory and applications of algebraic systems with idempotent operations. Given a set of samples of input and output of an unknown function, the problem is to construct a generalized tropical Puiseux polynomial that best approximates the function in the sense of a tropical distance function. The construction of an approximate polynomial involves the evaluation of both unknown coefficient and exponent of each monomial in the polynomial. To solve the approximation problem, we first reduce the problem to an equation in unknown vector of coefficients, which is given by a matrix with entries parameterized by unknown exponents. We derive a best approximate solution of the equation, which yields both vector of coefficients and approximation error parameterized by the exponents. Optimal values of exponents are found by minimization of the approximation error, which is reduced to a minimization of a function of exponents over all partitions of a finite set. We solve this minimization problem in terms of max-plus algebra (where addition is defined as maximum and multiplication as arithmetic addition) by using a computational procedure based on the agglomerative clustering technique. This solution is extended to the minimization problem of finding optimal exponents in the polynomial in terms of max-algebra (where addition is defined as maximum). The results obtained are applied to develop new solutions for conventional problems of discrete best approximation of real functions by piecewise linear functions and piecewise Puiseux polynomials. We discuss computational complexity of the proposed solution and estimate upper bounds on the computational time. We demonstrate examples of approximation problems solved in terms of max-plus and max-algebra, and give graphical illustrations.
We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.
Using a recently developed $\mathcal H$-calculus we propose a unified approach to the study of rational approximations of holomorphic semigroups on Banach spaces. We provide unified and simple proofs to a number of basic results on semigroup approximations and substantially improve some of them. We show that many of our estimates are essentially optimal, thus complementing the existing literature.
The word order of a sentence is shaped by multiple principles. The principle of syntactic dependency distance minimization is in conflict with the principle of surprisal minimization (or predictability maximization) in single head syntactic dependency structures: while the former predicts that the head should be placed at the center of the linear arrangement, the latter predicts that the head should be placed at one of the ends (either first or last). A critical question is when surprisal minimization (or predictability maximization) should surpass syntactic dependency distance minimization. In the context of single head structures, it has been predicted that this is more likely to happen when two conditions are met, i.e. (a) fewer words are involved and (b) words are shorter. Here we test the prediction on the noun phrase when it is composed of a demonstrative, a numeral, an adjective and a noun. We find that, across preferred orders in languages, the noun tends to be placed at one of the ends, confirming the theoretical prediction. We also show evidence of anti locality effects: syntactic dependency distances in preferred orders are longer than expected by chance.
Entropy conditions play a crucial role in the extraction of a physically relevant solution for a system of conservation laws, thus motivating the construction of entropy stable schemes that satisfy a discrete analogue of such conditions. TeCNO schemes (Fjordholm et al. 2012) form a class of arbitrary high-order entropy stable finite difference solvers, which require specialized reconstruction algorithms satisfying the sign property at each cell interface. Recently, third-order WENO schemes called SP-WENO (Fjordholm and Ray, 2016) and SP-WENOc (Ray, 2018) have been designed to satisfy the sign property. However, these WENO algorithms can perform poorly near shocks, with the numerical solutions exhibiting large spurious oscillations. In the present work, we propose a variant of the SP-WENO, termed as Deep Sign-Preserving WENO (DSP-WENO), where a neural network is trained to learn the WENO weighting strategy. The sign property and third-order accuracy are strongly imposed in the algorithm, which constrains the WENO weight selection region to a convex polygon. Thereafter, a neural network is trained to select the WENO weights from this convex region with the goal of improving the shock-capturing capabilities without sacrificing the rate of convergence in smooth regions. The proposed synergistic approach retains the mathematical framework of the TeCNO scheme while integrating deep learning to remedy the computational issues of the WENO-based reconstruction. We present several numerical experiments to demonstrate the significant improvement with DSP-WENO over the existing variants of WENO satisfying the sign property.
We consider the problem of estimating log-determinants of large, sparse, positive definite matrices. A key focus of our algorithm is to reduce computational cost, and it is based on sparse approximate inverses. The algorithm can be implemented to be adaptive, and it uses graph spline approximation to improve accuracy. We illustrate our approach on classes of large sparse matrices.
The amount of information in satisfiability problem (SAT) is considered. SAT can be polynomial-time solvable when the solving algorithm holds an exponential amount of information. It is also established that SAT Kolmogorov complexity is constant. It is argued that the amount of information in SAT grows at least exponentially with the size of the input instance. The amount of information in SAT is compared with the amount of information in the fixed code algorithms and generated over runtime.
The aim of this paper is to study the complexity of the model checking problem MC for inquisitive propositional logic InqB and for inquisitive modal logic InqM, that is, the problem of deciding whether a given finite structure for the logic satisfies a given formula. In recent years, this problem has been thoroughly investigated for several variations of dependence and teams logics, systems closely related to inquisitive logic. Building upon some ideas presented by Yang, we prove that the model checking problems for InqB and InqM are both AP-complete.
We develop a new coarse-scale approximation strategy for the nonlinear single-continuum Richards equation as an unsaturated flow over heterogeneous non-periodic media, using the online generalized multiscale finite element method (online GMsFEM) together with deep learning. A novelty of this approach is that local online multiscale basis functions are computed rapidly and frequently by utilizing deep neural networks (DNNs). More precisely, we employ the training set of stochastic permeability realizations and the computed relating online multiscale basis functions to train neural networks. The nonlinear map between such permeability fields and online multiscale basis functions is developed by our proposed deep learning algorithm. That is, in a new way, the predicted online multiscale basis functions incorporate the nonlinearity treatment of the Richards equation and refect any time-dependent changes in the problem's properties. Multiple numerical experiments in two-dimensional model problems show the good performance of this technique, in terms of predictions of the online multiscale basis functions and thus finding solutions.
Homogeneous normalized random measures with independent increments (hNRMIs) represent a broad class of Bayesian nonparametric priors and thus are widely used. In this paper, we obtain the strong law of large numbers, the central limit theorem and the functional central limit theorem of hNRMIs when the concentration parameter $a$ approaches infinity. To quantify the convergence rate of the obtained central limit theorem, we further study the Berry-Esseen bound, which turns out to be of the form $O \left( \frac{1}{\sqrt{a}}\right)$. As an application of the central limit theorem, we present the functional delta method, which can be employed to obtain the limit of the quantile process of hNRMIs. As an illustration of the central limit theorems, we demonstrate the convergence numerically for the Dirichlet processes and the normalized inverse Gaussian processes with various choices of the concentration parameters.