亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We enable efficient and effective coordination in unpredictable environments, i.e., in environments whose future evolution is unknown a priori and even adversarial. We are motivated by the future of autonomy that involves multiple robots coordinating in dynamic, unstructured, and adversarial environments to complete complex tasks such as target tracking, environmental mapping, and area monitoring. Such tasks are often modeled as submodular maximization coordination problems. We introduce the first submodular coordination algorithm with bounded tracking regret, i.e., with bounded suboptimality with respect to optimal time-varying actions that know the future a priori. The bound gracefully degrades with the environments' capacity to change adversarially. It also quantifies how often the robots must re-select actions to "learn" to coordinate as if they knew the future a priori. The algorithm requires the robots to select actions sequentially based on the actions selected by the previous robots in the sequence. Particularly, the algorithm generalizes the seminal Sequential Greedy algorithm by Fisher et al. to unpredictable environments, leveraging submodularity and algorithms for the problem of tracking the best expert. We validate our algorithm in simulated scenarios of target tracking.

相關內容

Object placement is a crucial task for robots in unstructured environments as it enables them to manipulate and arrange objects safely and efficiently. However, existing methods for object placement have limitations, such as the requirement for a complete 3D model of the object or the inability to handle complex object shapes, which restrict the applicability of robots in unstructured scenarios. In this paper, we propose an Unseen Object Placement (UOP) method that directly detects stable planes of unseen objects from a single-view and partial point cloud. We trained our model on large-scale simulation data to generalize over relationships between the shape and properties of stable planes with a 3D point cloud. We verify our approach through simulation and real-world robot experiments, demonstrating state-of-the-art performance for placing single-view and partial objects. Our UOP approach enables robots to place objects stably, even when the object's shape and properties are not fully known, providing a promising solution for object placement in unstructured environments. Our research has potential applications in various domains such as manufacturing, logistics, and home automation. Additional results can be viewed on //sites.google.com/view/uop-net-anonymous/, and we will release our code, dataset upon publication.

The Iterated Immediate Snapshot model (IIS) is a central model in the message adversary setting. We consider general message adversaries whose executions are arbitrary subsets of the executions of the IIS message adversary. We present a new topological approach for such general adversaries, based upon geometric simplicial complexes. We are able to define a topology directly on the considered sets of executions, which gives both simpler and more powerful ways of using topology for distributed computability. As application of this new framework, we present a complete characterization and lower bounds for solving set-agreement for general sub-IIS message adversaries.

Interior-point methods offer a highly versatile framework for convex optimization that is effective in theory and practice. A key notion in their theory is that of a self-concordant barrier. We give a suitable generalization of self-concordance to Riemannian manifolds and show that it gives the same structural results and guarantees as in the Euclidean setting, in particular local quadratic convergence of Newton's method. We analyze a path-following method for optimizing compatible objectives over a convex domain for which one has a self-concordant barrier, and obtain the standard complexity guarantees as in the Euclidean setting. We provide general constructions of barriers, and show that on the space of positive-definite matrices and other symmetric spaces, the squared distance to a point is self-concordant. To demonstrate the versatility of our framework, we give algorithms with state-of-the-art complexity guarantees for the general class of scaling and non-commutative optimization problems, which have been of much recent interest, and we provide the first algorithms for efficiently finding high-precision solutions for computing minimal enclosing balls and geometric medians in nonpositive curvature.

We present angle-uniform parallel coordinates, a data-independent technique that deforms the image plane of parallel coordinates so that the angles of linear relationships between two variables are linearly mapped along the horizontal axis of the parallel coordinates plot. Despite being a common method for visualizing multidimensional data, parallel coordinates are ineffective for revealing positive correlations since the associated parallel coordinates points of such structures may be located at infinity in the image plane and the asymmetric encoding of negative and positive correlations may lead to unreliable estimations. To address this issue, we introduce a transformation that bounds all points horizontally using an angle-uniform mapping and shrinks them vertically in a structure-preserving fashion; polygonal lines become smooth curves and a symmetric representation of data correlations is achieved. We further propose a combined subsampling and density visualization approach to reduce visual clutter caused by overdrawing. Our method enables accurate visual pattern interpretation of data correlations, and its data-independent nature makes it applicable to all multidimensional datasets. The usefulness of our method is demonstrated using examples of synthetic and real-world datasets.

In recent years, increasing attention has been directed to leveraging pre-trained vision models for motor control. While existing works mainly emphasize the importance of this pre-training phase, the arguably equally important role played by downstream policy learning during control-specific fine-tuning is often neglected. It thus remains unclear if pre-trained vision models are consistent in their effectiveness under different control policies. To bridge this gap in understanding, we conduct a comprehensive study on 14 pre-trained vision models using 3 distinct classes of policy learning methods, including reinforcement learning (RL), imitation learning through behavior cloning (BC), and imitation learning with a visual reward function (VRF). Our study yields a series of intriguing results, including the discovery that the effectiveness of pre-training is highly dependent on the choice of the downstream policy learning algorithm. We show that conventionally accepted evaluation based on RL methods is highly variable and therefore unreliable, and further advocate for using more robust methods like VRF and BC. To facilitate more universal evaluations of pre-trained models and their policy learning methods in the future, we also release a benchmark of 21 tasks across 3 different environments alongside our work.

Adhesive joints are increasingly used in industry for a wide variety of applications because of their favorable characteristics such as high strength-to-weight ratio, design flexibility, limited stress concentrations, planar force transfer, good damage tolerance, and fatigue resistance. Finding the optimal process parameters for an adhesive bonding process is challenging: the optimization is inherently multi-objective (aiming to maximize break strength while minimizing cost), constrained (the process should not result in any visual damage to the materials, and stress tests should not result in failures that are adhesion-related), and uncertain (testing the same process parameters several times may lead to different break strengths). Real-life physical experiments in the lab are expensive to perform. Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem, due to the prohibitive amount of experiments required for evaluation. Although Bayesian optimization-based algorithms are preferred to solve such expensive problems, few methods consider the optimization of more than one (noisy) objective and several constraints at the same time. In this research, we successfully applied specific machine learning techniques (Gaussian Process Regression) to emulate the objective and constraint functions based on a limited amount of experimental data. The techniques are embedded in a Bayesian optimization algorithm, which succeeds in detecting Pareto-optimal process settings in a highly efficient way (i.e., requiring a limited number of physical experiments).

We consider a search and rescue game introduced recently by the first author. An immobile target or targets (for example, injured hikers) are hidden on a graph. The terrain is assumed to dangerous, so that when any given vertex of the graph is searched, there is a certain probability that the search will come to an end, otherwise with the complementary {\em success probability} the search can continue. A Searcher searches the graph with the aim of finding all the targets with maximum probability. Here, we focus on the game in the case that the graph is a cycle. In the case that there is only one target, we solve the game for equal success probabilities, and for a class of games with unequal success probabilities. For multiple targets and equal success probabilities, we give a solution for an adaptive Searcher and a solution in a special case for a non-adaptive Searcher. We also consider a continuous version of the model, giving a full solution for an adaptive Searcher and approximately optimal solutions in the non-adaptive case.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司