亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The front-end is a critical component of English text-to-speech (TTS) systems, responsible for extracting linguistic features that are essential for a text-to-speech model to synthesize speech, such as prosodies and phonemes. The English TTS front-end typically consists of a text normalization (TN) module, a prosody word prosody phrase (PWPP) module, and a grapheme-to-phoneme (G2P) module. However, current research on the English TTS front-end focuses solely on individual modules, neglecting the interdependence between them and resulting in sub-optimal performance for each module. Therefore, this paper proposes a unified front-end framework that captures the dependencies among the English TTS front-end modules. Extensive experiments have demonstrated that the proposed method achieves state-of-the-art (SOTA) performance in all modules.

相關內容

語音合成(Speech Synthesis),也稱為文語轉換(Text-to-Speech, TTS,它是將任意的輸入文本轉換成自然流暢的語音輸出。語音合成涉及到人工智能、心理學、聲學、語言學、數字信號處理、計算機科學等多個學科技術,是信息處理領域中的一項前沿技術。 隨著計算機技術的不斷提高,語音合成技術從早期的共振峰合成,逐步發展為波形拼接合成和統計參數語音合成,再發展到混合語音合成;合成語音的質量、自然度已經得到明顯提高,基本能滿足一些特定場合的應用需求。目前,語音合成技術在銀行、醫院等的信息播報系統、汽車導航系統、自動應答呼叫中心等都有廣泛應用,取得了巨大的經濟效益。 另外,隨著智能手機、MP3、PDA 等與我們生活密切相關的媒介的大量涌現,語音合成的應用也在逐漸向娛樂、語音教學、康復治療等領域深入。可以說語音合成正在影響著人們生活的方方面面。

The trustworthiness of AI applications has been the subject of recent research and is also addressed in the EU's recently adopted AI Regulation. The currently emerging foundation models in the field of text, speech and image processing offer completely new possibilities for developing AI applications. This whitepaper shows how the trustworthiness of an AI application developed with foundation models can be evaluated and ensured. For this purpose, the application-specific, risk-based approach for testing and ensuring the trustworthiness of AI applications, as developed in the 'AI Assessment Catalog - Guideline for Trustworthy Artificial Intelligence' by Fraunhofer IAIS, is transferred to the context of foundation models. Special consideration is given to the fact that specific risks of foundation models can have an impact on the AI application and must also be taken into account when checking trustworthiness. Chapter 1 of the white paper explains the fundamental relationship between foundation models and AI applications based on them in terms of trustworthiness. Chapter 2 provides an introduction to the technical construction of foundation models and Chapter 3 shows how AI applications can be developed based on them. Chapter 4 provides an overview of the resulting risks regarding trustworthiness. Chapter 5 shows which requirements for AI applications and foundation models are to be expected according to the draft of the European Union's AI Regulation and Chapter 6 finally shows the system and procedure for meeting trustworthiness requirements.

This short note is written for rapid communication of long context training and to share the idea of how to train it with low memory usage. In the note, we generalize the attention algorithm and neural network of Generative Pre-Trained Transformers and reinterpret it in Path integral formalism. First, the role of the transformer is understood as the time evolution of the token state and second, it is suggested that the all key-token states in the same time as the query-token can attend to the attention with the query token states. As a result of the repetitive time evolution, it is discussed that the token states in the past sequence meats the token states in the present sequence so that the attention between separated sequences becomes possible for maintaining infinite contextual information just by using low memory for limited size of sequence. For the experiment, the $12$ input token window size was taken and one GPU with $24$GB memory was used for the pre-training. It was confirmed that more than $150$ length context is preserved. The sampling result of the training, the code and the other details will be included in the revised version of this note later.

The grading of open-ended questions is a high-effort, high-impact task in education. Automating this task promises a significant reduction in workload for education professionals, as well as more consistent grading outcomes for students, by circumventing human subjectivity and error. While recent breakthroughs in AI technology might facilitate such automation, this has not been demonstrated at scale. It this paper, we introduce a novel automatic short answer grading (ASAG) system. The system is based on a fine-tuned open-source transformer model which we trained on large set of exam data from university courses across a large range of disciplines. We evaluated the trained model's performance against held-out test data in a first experiment and found high accuracy levels across a broad spectrum of unseen questions, even in unseen courses. We further compared the performance of our model with that of certified human domain experts in a second experiment: we first assembled another test dataset from real historical exams - the historic grades contained in that data were awarded to students in a regulated, legally binding examination process; we therefore considered them as ground truth for our experiment. We then asked certified human domain experts and our model to grade the historic student answers again without disclosing the historic grades. Finally, we compared the hence obtained grades with the historic grades (our ground truth). We found that for the courses examined, the model deviated less from the official historic grades than the human re-graders - the model's median absolute error was 44 % smaller than the human re-graders', implying that the model is more consistent than humans in grading. These results suggest that leveraging AI enhanced grading can reduce human subjectivity, improve consistency and thus ultimately increase fairness.

This manuscript derives locally weighted ensemble Kalman methods from the point of view of ensemble-based function approximation. This is done by using pointwise evaluations to build up a local linear or quadratic approximation of a function, tapering off the effect of distant particles via local weighting. This introduces a candidate method (the locally weighted Ensemble Kalman method for inversion) with the motivation of combining some of the strengths of the particle filter (ability to cope with nonlinear maps and non-Gaussian distributions) and the Ensemble Kalman filter (no filter degeneracy).

First order shape optimization methods, in general, require a large number of iterations until they reach a locally optimal design. While higher order methods can significantly reduce the number of iterations, they exhibit only local convergence properties, necessitating a sufficiently close initial guess. In this work, we present an unregularized shape-Newton method and combine shape optimization with homotopy (or continuation) methods in order to allow for the use of higher order methods even if the initial design is far from a solution. The idea of homotopy methods is to continuously connect the problem of interest with a simpler problem and to follow the corresponding solution path by a predictor-corrector scheme. We use a shape-Newton method as a corrector and arbitrary order shape derivatives for the predictor. Moreover, we apply homotopy methods also to the case of multi-objective shape optimization to efficiently obtain well-distributed points on a Pareto front. Finally, our results are substantiated with a set of numerical experiments.

We study the properties of a family of distances between functions of a single variable. These distances are examples of integral probability metrics, and have been used previously for comparing probability measures on the line; special cases include the Earth Mover's Distance and the Kolmogorov Metric. We examine their properties for general signals, proving that they are robust to a broad class of deformations. We also establish corresponding robustness results for the induced sliced distances between multivariate functions. Finally, we establish error bounds for approximating the univariate metrics from finite samples, and prove that these approximations are robust to additive Gaussian noise. The results are illustrated in numerical experiments, which include comparisons with Wasserstein distances.

The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.

The complex challenge of detecting sarcasm in Arabic speech on social media is increased by the language diversity and the nature of sarcastic expressions. There is a significant gap in the capability of existing models to effectively interpret sarcasm in Arabic, which mandates the necessity for more sophisticated and precise detection methods. In this paper, we investigate the impact of a fundamental preprocessing component on sarcasm speech detection. While emojis play a crucial role in mitigating the absence effect of body language and facial expressions in modern communication, their impact on automated text analysis, particularly in sarcasm detection, remains underexplored. We investigate the impact of emoji exclusion from datasets on the performance of sarcasm detection models in social media content for Arabic as a vocabulary-super rich language. This investigation includes the adaptation and enhancement of AraBERT pre-training models, specifically by excluding emojis, to improve sarcasm detection capabilities. We use AraBERT pre-training to refine the specified models, demonstrating that the removal of emojis can significantly boost the accuracy of sarcasm detection. This approach facilitates a more refined interpretation of language, eliminating the potential confusion introduced by non-textual elements. The evaluated AraBERT models, through the focused strategy of emoji removal, adeptly navigate the complexities of Arabic sarcasm. This study establishes new benchmarks in Arabic natural language processing and presents valuable insights for social media platforms.

While analogies are a common way to evaluate word embeddings in NLP, it is also of interest to investigate whether or not analogical reasoning is a task in itself that can be learned. In this paper, we test several ways to learn basic analogical reasoning, specifically focusing on analogies that are more typical of what is used to evaluate analogical reasoning in humans than those in commonly used NLP benchmarks. Our experiments find that models are able to learn analogical reasoning, even with a small amount of data. We additionally compare our models to a dataset with a human baseline, and find that after training, models approach human performance.

For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.

北京阿比特科技有限公司