亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a new procedure to validate the multi-factor pricing theory by testing the presence of alpha in linear factor pricing models with a large number of assets. Because the market's inefficient pricing is likely to occur to a small fraction of exceptional assets, we develop a testing procedure that is particularly powerful against sparse signals. Based on the high-dimensional Gaussian approximation theory, we propose a simulation-based approach to approximate the limiting null distribution of the test. Our numerical studies show that the new procedure can deliver a reasonable size and achieve substantial power improvement compared to the existing tests under sparse alternatives, and especially for weak signals.

相關內容

We introduce a sufficient graphical model by applying the recently developed nonlinear sufficient dimension reduction techniques to the evaluation of conditional independence. The graphical model is nonparametric in nature, as it does not make distributional assumptions such as the Gaussian or copula Gaussian assumptions. However, unlike a fully nonparametric graphical model, which relies on the high-dimensional kernel to characterize conditional independence, our graphical model is based on conditional independence given a set of sufficient predictors with a substantially reduced dimension. In this way we avoid the curse of dimensionality that comes with a high-dimensional kernel. We develop the population-level properties, convergence rate, and variable selection consistency of our estimate. By simulation comparisons and an analysis of the DREAM 4 Challenge data set, we demonstrate that our method outperforms the existing methods when the Gaussian or copula Gaussian assumptions are violated, and its performance remains excellent in the high-dimensional setting.

Standard bandit algorithms that assume continual reallocation of measurement effort are challenging to implement due to delayed feedback and infrastructural/organizational difficulties. Motivated by practical instances involving a handful of reallocation epochs in which outcomes are measured in batches, we develop a computation-driven adaptive experimentation framework that can flexibly handle batching. Our main observation is that normal approximations, which are universal in statistical inference, can also guide the design of adaptive algorithms. By deriving a Gaussian sequential experiment, we formulate a dynamic program that can leverage prior information on average rewards. Instead of the typical theory-driven paradigm, we leverage computational tools and empirical benchmarking for algorithm development. In particular, our empirical analysis highlights a simple yet effective algorithm, Residual Horizon Optimization, which iteratively solves a planning problem using stochastic gradient descent. Our approach significantly improves statistical power over standard methods, even when compared to Bayesian bandit algorithms (e.g., Thompson sampling) that require full distributional knowledge of individual rewards. Overall, we expand the scope of adaptive experimentation to settings that are difficult for standard methods, involving a small number of reallocation epochs, low signal-to-noise ratio, and unknown reward distributions.

We present a fully polynomial-time approximation scheme (FPTAS) for computing equilibria in congestion games, under smoothed running-time analysis. More precisely, we prove that if the resource costs of a congestion game are randomly perturbed by independent noises, whose density is at most $\phi$, then any sequence of $(1+\varepsilon)$-improving dynamics will reach an $(1+\varepsilon)$-approximate pure Nash equilibrium (PNE) after an expected number of steps which is strongly polynomial in $\frac{1}{\varepsilon}$, $\phi$, and the size of the game's description. Our results establish a sharp contrast to the traditional worst-case analysis setting, where it is known that better-response dynamics take exponentially long to converge to $\alpha$-approximate PNE, for any constant factor $\alpha\geq 1$. As a matter of fact, computing $\alpha$-approximate PNE in congestion games is PLS-hard. We demonstrate how our analysis can be applied to various different models of congestion games including general, step-function, and polynomial cost, as well as fair cost-sharing games (where the resource costs are decreasing). It is important to note that our bounds do not depend explicitly on the cardinality of the players' strategy sets, and thus the smoothed FPTAS is readily applicable to network congestion games as well.

Personalized pricing, which involves tailoring prices based on individual characteristics, is commonly used by firms to implement a consumer-specific pricing policy. In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. Such strategic behavior can hinder firms from maximizing their profits. In this paper, we study the contextual dynamic pricing problem with strategic buyers. The seller does not observe the buyer's true feature, but a manipulated feature according to buyers' strategic behavior. In addition, the seller does not observe the buyers' valuation of the product, but only a binary response indicating whether a sale happens or not. Recognizing these challenges, we propose a strategic dynamic pricing policy that incorporates the buyers' strategic behavior into the online learning to maximize the seller's cumulative revenue. We first prove that existing non-strategic pricing policies that neglect the buyers' strategic behavior result in a linear $\Omega(T)$ regret with $T$ the total time horizon, indicating that these policies are not better than a random pricing policy. We then establish that our proposed policy achieves a sublinear regret upper bound of $O(\sqrt{T})$. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. Our policy can also accommodate the scenario when the marginal cost of manipulation is unknown in advance. To account for it, we simultaneously estimate the valuation parameter and the cost parameter in the online pricing policy, which is shown to also achieve an $O(\sqrt{T})$ regret bound. Extensive experiments support our theoretical developments and demonstrate the superior performance of our policy compared to other pricing policies that are unaware of the strategic behaviors.

Adaptive learning is necessary for non-stationary environments where the learning machine needs to forget past data distribution. Efficient algorithms require a compact model update to not grow in computational burden with the incoming data and with the lowest possible computational cost for online parameter updating. Existing solutions only partially cover these needs. Here, we propose the first adaptive sparse Gaussian Process (GP) able to address all these issues. We first reformulate a variational sparse GP algorithm to make it adaptive through a forgetting factor. Next, to make the model inference as simple as possible, we propose updating a single inducing point of the sparse GP model together with the remaining model parameters every time a new sample arrives. As a result, the algorithm presents a fast convergence of the inference process, which allows an efficient model update (with a single inference iteration) even in highly non-stationary environments. Experimental results demonstrate the capabilities of the proposed algorithm and its good performance in modeling the predictive posterior in mean and confidence interval estimation compared to state-of-the-art approaches.

Contemporary scientific research is a distributed, collaborative endeavor, carried out by teams of researchers, regulatory institutions, funding agencies, commercial partners, and scientific bodies, all interacting with each other and facing different incentives. To maintain scientific rigor, statistical methods should acknowledge this state of affairs. To this end, we study hypothesis testing when there is an agent (e.g., a researcher or a pharmaceutical company) with a private prior about an unknown parameter and a principal (e.g., a policymaker or regulator) who wishes to make decisions based on the parameter value. The agent chooses whether to run a statistical trial based on their private prior and then the result of the trial is used by the principal to reach a decision. We show how the principal can conduct statistical inference that leverages the information that is revealed by an agent's strategic behavior -- their choice to run a trial or not. In particular, we show how the principal can design a policy to elucidate partial information about the agent's private prior beliefs and use this to control the posterior probability of the null. One implication is a simple guideline for the choice of significance threshold in clinical trials: the type-I error level should be set to be strictly less than the cost of the trial divided by the firm's profit if the trial is successful.

This short paper presents an efficient path following solution for ground vehicles tailored to game AI. Our focus is on adapting established techniques to design simple solutions with parameters that are easily tunable for an efficient benchmark path follower. Our solution pays particular attention to computing a target speed which uses quadratic Bezier curves to estimate the path curvature. The performance of the proposed path follower is evaluated through a variety of test scenarios in a first-person shooter game, demonstrating its effectiveness and robustness in handling different types of paths and vehicles. We achieved a 70% decrease in the total number of stuck events compared to an existing path following solution.

A methodology for high dimensional causal inference in a time series context is introduced. It is assumed that there is a monotonic transformation of the data such that the dynamics of the transformed variables are described by a Gaussian vector autoregressive process. This is tantamount to assume that the dynamics are captured by a Gaussian copula. No knowledge or estimation of the marginal distribution of the data is required. The procedure consistently identifies the parameters that describe the dynamics of the process and the conditional causal relations among the possibly high dimensional variables under sparsity conditions. The methodology allows us to identify such causal relations in the form of a directed acyclic graph. As illustrative applications we consider the impact of supply side oil shocks on the economy, and the causal relations between aggregated variables constructed from the limit order book on four stock constituents of the S&P500.

In this paper we extend to two-dimensional data two recently introduced one-dimensional compressibility measures: the $\gamma$ measure defined in terms of the smallest string attractor, and the $\delta$ measure defined in terms of the number of distinct substrings of the input string. Concretely, we introduce the two-dimensional measures $\gamma_{2D}$ and $\delta_{2D}$ as natural generalizations of $\gamma$ and $\delta$ and study some of their properties. Among other things, we prove that $\delta_{2D}$ is monotone and can be computed in linear time, and we show that although it is still true that $\delta_{2D} \leq \gamma_{2D}$ the gap between the two measures can be $\Omega(\sqrt{n})$ for families of $n\times n$ matrices and therefore asymptotically larger than the gap in one-dimension. Finally, we use the measures $\gamma_{2D}$ and $\delta_{2D}$ to provide the first analysis of the space usage of the two-dimensional block tree introduced in [Brisaboa et al., Two-dimensional block trees, The computer Journal, 2023].

Dynamic graph embedding has emerged as a very effective technique for addressing diverse temporal graph analytic tasks (i.e., link prediction, node classification, recommender systems, anomaly detection, and graph generation) in various applications. Such temporal graphs exhibit heterogeneous transient dynamics, varying time intervals, and highly evolving node features throughout their evolution. Hence, incorporating long-range dependencies from the historical graph context plays a crucial role in accurately learning their temporal dynamics. In this paper, we develop a graph embedding model with uncertainty quantification, TransformerG2G, by exploiting the advanced transformer encoder to first learn intermediate node representations from its current state ($t$) and previous context (over timestamps [$t-1, t-l$], $l$ is the length of context). Moreover, we employ two projection layers to generate lower-dimensional multivariate Gaussian distributions as each node's latent embedding at timestamp $t$. We consider diverse benchmarks with varying levels of ``novelty" as measured by the TEA plots. Our experiments demonstrate that the proposed TransformerG2G model outperforms conventional multi-step methods and our prior work (DynG2G) in terms of both link prediction accuracy and computational efficiency, especially for high degree of novelty. Furthermore, the learned time-dependent attention weights across multiple graph snapshots reveal the development of an automatic adaptive time stepping enabled by the transformer. Importantly, by examining the attention weights, we can uncover temporal dependencies, identify influential elements, and gain insights into the complex interactions within the graph structure. For example, we identified a strong correlation between attention weights and node degree at the various stages of the graph topology evolution.

北京阿比特科技有限公司