亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The bivariate Gaussian distribution has been the basis of probability and statistics for many years. Nonetheless, this distribution faces some problems, mainly due to the fact that many real-world phenomena generate data that follow asymmetric distributions. Bidimensional log-symmetric models have attractive properties and can be considered as good alternatives to solve this problem. In this paper, we discuss bivariate log-symmetric distributions and their characterizations. We derive several statistical properties and obtain the maximum likelihood estimators of the model parameters. A Monte Carlo simulation study is performed to evaluate the performance of the parameter estimation method. A real data set is finally analyzed to illustrate the proposed approach.

相關內容

We study statistical inference on the similarity/distance between two time-series under uncertain environment by considering a statistical hypothesis test on the distance obtained from Dynamic Time Warping (DTW) algorithm. The sampling distribution of the DTW distance is too difficult to derive because it is obtained based on the solution of the DTW algorithm, which is complicated. To circumvent this difficulty, we propose to employ the conditional selective inference framework, which enables us to derive a valid inference method on the DTW distance. To our knowledge, this is the first method that can provide a valid p-value to quantify the statistical significance of the DTW distance, which is helpful for high-stake decision making such as abnormal time-series detection problems. We evaluate the performance of the proposed inference method on both synthetic and real-world datasets.

Bayesian model comparison (BMC) offers a principled approach for assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then use our method to compare four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. In this application, we corroborate evidence for the recently proposed L\'evy flight model of decision-making and show how transfer learning can be leveraged to enhance training efficiency. Reproducible code for all analyses is provided.

We study the maximum likelihood estimation (MLE) in the matrix-variate deviated models where the data are generated from the density function $(1-\lambda^{*})h_{0}(x)+\lambda^{*}f(x|\mu^{*}, \Sigma^{*})$ where $h_{0}$ is a known function, $\lambda^{*} \in [0,1]$ and $(\mu^{*}, \Sigma^{*})$ are unknown parameters to estimate. The main challenges in deriving the convergence rate of the MLE mainly come from two issues: (1) The interaction between the function $h_{0}$ and the density function $f$; (2) The deviated proportion $\lambda^{*}$ can go to the extreme points of $[0,1]$ as the sample size goes to infinity. To address these challenges, we develop the distinguishability condition to capture the linear independent relation between the function $h_{0}$ and the density function $f$. We then provide comprehensive convergence rates of the MLE via the vanishing rate of $\lambda^{*}$ to 0 as well as the distinguishability of $h_{0}$ and $f$.

Dynamical models described by ordinary differential equations (ODEs) are a fundamental tool in the sciences and engineering. Exact reduction aims at producing a lower-dimensional model in which each macro-variable can be directly related to the original variables, and it is thus a natural step towards the model's formal analysis and mechanistic understanding. We present an algorithm which, given a polynomial ODE model, computes a longest possible chain of exact linear reductions of the model such that each reduction refines the previous one, thus giving a user control of the level of detail preserved by the reduction. This significantly generalizes over the existing approaches which compute only the reduction of the lowest dimension subject to an approach-specific constraint. The algorithm reduces finding exact linear reductions to a question about representations of finite-dimensional algebras. We provide an implementation of the algorithm, demonstrate its performance on a set of benchmarks, and illustrate the applicability via case studies. Our implementation is freely available at //github.com/x3042/ExactODEReduction.jl

In this paper, we introduce a new causal framework capable of dealing with probabilistic and non-probabilistic problems. Indeed, we provide a direct causal effect formula called Probabilistic vAriational Causal Effect (PACE) and its variations satisfying some ideas and postulates. Our formula of causal effect uses the idea of the total variation of a function integrated with probability theory. The probabilistic part is the natural availability of changing an exposure values given some variables. These variables interfere with the effect of the exposure on a given outcome. PACE has a parameter $d$ determining the degree of considering the natural availability of changing the exposure values. The lower values of $d$ refer to the scenarios for which rare cases are important. In contrast, with the higher values of $d$, our framework deals with the problems that are in nature probabilistic. Hence, instead of a single value for causal effect, we provide a causal effect vector by discretizing $d$. Further, we introduce the positive and negative PACE to measure the positive and the negative causal changes in the outcome while changing the exposure values. Furthermore, we provide an identifiability criterion for PACE to deal with observational studies. We also address the problem of computing counterfactuals in causal reasoning. We compare our framework to the Pearl, the mutual information, the conditional mutual information, and the Janzing et al. frameworks by investigating several examples.

Stochastic versions of proximal methods have gained much attention in statistics and machine learning. These algorithms tend to admit simple, scalable forms, and enjoy numerical stability via implicit updates. In this work, we propose and analyze a stochastic version of the recently proposed proximal distance algorithm, a class of iterative optimization methods that recover a desired constrained estimation problem as a penalty parameter $\rho \rightarrow \infty$. By uncovering connections to related stochastic proximal methods and interpreting the penalty parameter as the learning rate, we justify heuristics used in practical manifestations of the proximal distance method, establishing their convergence guarantees for the first time. Moreover, we extend recent theoretical devices to establish finite error bounds and a complete characterization of convergence rates regimes. We validate our analysis via a thorough empirical study, also showing that unsurprisingly, the proposed method outpaces batch versions on popular learning tasks.

This paper studies multivariate nonparametric change point localization and inference problems. The data consists of a multivariate time series with potentially short range dependence. The distribution of this data is assumed to be piecewise constant with densities in a H\"{o}lder class. The change points, or times at which the distribution changes, are unknown. We derive the limiting distributions of the change point estimators when the minimal jump size vanishes or remains constant, a first in the literature on change point settings. We are introducing two new features: a consistent estimator that can detect when a change is happening in data with short-term dependence, and a consistent block-type long-run variance estimator. Numerical evidence is provided to back up our theoretical results.

Covariate measurement error in nonparametric regression is a common problem in nutritional epidemiology and geostatistics, and other fields. Over the last two decades, this problem has received substantial attention in the frequentist literature. Bayesian approaches for handling measurement error have only been explored recently and are surprisingly successful, although the lack of a proper theoretical justification regarding the asymptotic performance of the estimators. By specifying a Gaussian process prior on the regression function and a Dirichlet process Gaussian mixture prior on the unknown distribution of the unobserved covariates, we show that the posterior distribution of the regression function and the unknown covariates density attain optimal rates of contraction adaptively over a range of H\"{o}lder classes, up to logarithmic terms. This improves upon the existing classical frequentist results which require knowledge of the smoothness of the underlying function to deliver optimal risk bounds. We also develop a novel surrogate prior for approximating the Gaussian process prior that leads to efficient computation and preserves the covariance structure, thereby facilitating easy prior elicitation. We demonstrate the empirical performance of our approach and compare it with competitors in a wide range of simulation experiments and a real data example.

Multivariate point processes are widely applied to model event-type data such as natural disasters, online message exchanges, financial transactions or neuronal spike trains. One very popular point process model in which the probability of occurrences of new events depend on the past of the process is the Hawkes process. In this work we consider the nonlinear Hawkes process, which notably models excitation and inhibition phenomena between dimensions of the process. In a nonparametric Bayesian estimation framework, we obtain concentration rates of the posterior distribution on the parameters, under mild assumptions on the prior distribution and the model. These results also lead to convergence rates of Bayesian estimators. Another object of interest in event-data modelling is to recover the graph of interaction - or Granger connectivity graph - of the phenomenon. We provide consistency guarantees on Bayesian methods for estimating this quantity; in particular, we prove that the posterior distribution is consistent on the graph adjacency matrix of the process, as well as a Bayesian estimator based on an adequate loss function.

We develop a novel, general and computationally efficient framework, called Divide and Conquer Dynamic Programming (DCDP), for localizing change points in time series data with high-dimensional features. DCDP deploys a class of greedy algorithms that are applicable to a broad variety of high-dimensional statistical models and can enjoy almost linear computational complexity. We investigate the performance of DCDP in three commonly studied change point settings in high dimensions: the mean model, the Gaussian graphical model, and the linear regression model. In all three cases, we derive non-asymptotic bounds for the accuracy of the DCDP change point estimators. We demonstrate that the DCDP procedures consistently estimate the change points with sharp, and in some cases, optimal rates while incurring significantly smaller computational costs than the best available algorithms. Our findings are supported by extensive numerical experiments on both synthetic and real data.

北京阿比特科技有限公司