亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce HIDRO-VQA, a no-reference (NR) video quality assessment model designed to provide precise quality evaluations of High Dynamic Range (HDR) videos. HDR videos exhibit a broader spectrum of luminance, detail, and color than Standard Dynamic Range (SDR) videos. As HDR content becomes increasingly popular, there is a growing demand for video quality assessment (VQA) algorithms that effectively address distortions unique to HDR content. To address this challenge, we propose a self-supervised contrastive fine-tuning approach to transfer quality-aware features from the SDR to the HDR domain, utilizing unlabeled HDR videos. Our findings demonstrate that self-supervised pre-trained neural networks on SDR content can be further fine-tuned in a self-supervised setting using limited unlabeled HDR videos to achieve state-of-the-art performance on the only publicly available VQA database for HDR content, the LIVE-HDR VQA database. Moreover, our algorithm can be extended to the Full Reference VQA setting, also achieving state-of-the-art performance. Our code is available publicly at //github.com/avinabsaha/HIDRO-VQA.

相關內容

This paper introduces CADgpt, an innovative plugin integrating Natural Language Processing (NLP) with Rhino3D for enhancing 3D modelling in computer-aided design (CAD) environments. Leveraging OpenAI's GPT-4, CADgpt simplifies the CAD interface, enabling users, particularly beginners, to perform complex 3D modelling tasks through intuitive natural language commands. This approach significantly reduces the learning curve associated with traditional CAD software, fostering a more inclusive and engaging educational environment. The paper discusses CADgpt's technical architecture, including its integration within Rhino3D and the adaptation of GPT-4 capabilities for CAD tasks. It presents case studies demonstrating CADgpt's efficacy in various design scenarios, highlighting its potential to democratise design education by making sophisticated design tools accessible to a broader range of students. The discussion further explores CADgpt's implications for pedagogy and curriculum development, emphasising its role in enhancing creative exploration and conceptual thinking in design education. Keywords: Natural Language Processing, Computer-Aided Design, 3D Modelling, Design Automation, Design Education, Architectural Education

Medical visual question answering (VQA) is a challenging multimodal task, where Vision-Language Pre-training (VLP) models can effectively improve the generalization performance. However, most methods in the medical field treat VQA as an answer classification task which is difficult to transfer to practical application scenarios. Additionally, due to the privacy of medical images and the expensive annotation process, large-scale medical image-text pairs datasets for pretraining are severely lacking. In this paper, we propose a large-scale MultI-task Self-Supervised learning based framework (MISS) for medical VQA tasks. Unlike existing methods, we treat medical VQA as a generative task. We unify the text encoder and multimodal encoder and align image-text features through multi-task learning. Furthermore, we propose a Transfer-and-Caption method that extends the feature space of single-modal image datasets using large language models (LLMs), enabling those traditional medical vision field task data to be applied to VLP. Experiments show that our method achieves excellent results with fewer multimodal datasets and demonstrates the advantages of generative VQA models. The code and model weights will be released upon the paper's acceptance.

Natural language processing models are vulnerable to adversarial examples. Previous textual adversarial attacks adopt gradients or confidence scores to calculate word importance ranking and generate adversarial examples. However, this information is unavailable in the real world. Therefore, we focus on a more realistic and challenging setting, named hard-label attack, in which the attacker can only query the model and obtain a discrete prediction label. Existing hard-label attack algorithms tend to initialize adversarial examples by random substitution and then utilize complex heuristic algorithms to optimize the adversarial perturbation. These methods require a lot of model queries and the attack success rate is restricted by adversary initialization. In this paper, we propose a novel hard-label attack algorithm named LimeAttack, which leverages a local explainable method to approximate word importance ranking, and then adopts beam search to find the optimal solution. Extensive experiments show that LimeAttack achieves the better attacking performance compared with existing hard-label attack under the same query budget. In addition, we evaluate the effectiveness of LimeAttack on large language models, and results indicate that adversarial examples remain a significant threat to large language models. The adversarial examples crafted by LimeAttack are highly transferable and effectively improve model robustness in adversarial training.

With recent advancements in aerospace technology, the volume of unlabeled remote sensing image (RSI) data has increased dramatically. Effectively leveraging this data through self-supervised learning (SSL) is vital in the field of remote sensing. However, current methodologies, particularly contrastive learning (CL), a leading SSL method, encounter specific challenges in this domain. Firstly, CL often mistakenly identifies geographically adjacent samples with similar semantic content as negative pairs, leading to confusion during model training. Secondly, as an instance-level discriminative task, it tends to neglect the essential fine-grained features and complex details inherent in unstructured RSIs. To overcome these obstacles, we introduce SwiMDiff, a novel self-supervised pre-training framework designed for RSIs. SwiMDiff employs a scene-wide matching approach that effectively recalibrates labels to recognize data from the same scene as false negatives. This adjustment makes CL more applicable to the nuances of remote sensing. Additionally, SwiMDiff seamlessly integrates CL with a diffusion model. Through the implementation of pixel-level diffusion constraints, we enhance the encoder's ability to capture both the global semantic information and the fine-grained features of the images more comprehensively. Our proposed framework significantly enriches the information available for downstream tasks in remote sensing. Demonstrating exceptional performance in change detection and land-cover classification tasks, SwiMDiff proves its substantial utility and value in the field of remote sensing.

Action recognition in videos poses a challenge due to its high computational cost, especially for Joint Space-Time video transformers (Joint VT). Despite their effectiveness, the excessive number of tokens in such architectures significantly limits their efficiency. In this paper, we propose HaltingVT, an efficient video transformer adaptively removing redundant video patch tokens, which is primarily composed of a Joint VT and a Glimpser module. Specifically, HaltingVT applies data-adaptive token reduction at each layer, resulting in a significant reduction in the overall computational cost. Besides, the Glimpser module quickly removes redundant tokens in shallow transformer layers, which may even be misleading for video recognition tasks based on our observations. To further encourage HaltingVT to focus on the key motion-related information in videos, we design an effective Motion Loss during training. HaltingVT acquires video analysis capabilities and token halting compression strategies simultaneously in a unified training process, without requiring additional training procedures or sub-networks. On the Mini-Kinetics dataset, we achieved 75.0% top-1 ACC with 24.2 GFLOPs, as well as 67.2% top-1 ACC with an extremely low 9.9 GFLOPs. The code is available at //github.com/dun-research/HaltingVT.

The goal of our work is to generate high-quality novel views from monocular videos of complex and dynamic scenes. Prior methods, such as DynamicNeRF, have shown impressive performance by leveraging time-varying dynamic radiation fields. However, these methods have limitations when it comes to accurately modeling the motion of complex objects, which can lead to inaccurate and blurry renderings of details. To address this limitation, we propose a novel approach that builds upon a recent generalization NeRF, which aggregates nearby views onto new viewpoints. However, such methods are typically only effective for static scenes. To overcome this challenge, we introduce a module that operates in both the time and frequency domains to aggregate the features of object motion. This allows us to learn the relationship between frames and generate higher-quality images. Our experiments demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets. Specifically, our approach outperforms existing methods in terms of both the accuracy and visual quality of the synthesized views.

This paper considers a Gaussian multi-input multi-output (MIMO) wiretap channel with a legitimate transmitter, a legitimate receiver (Bob), an eavesdropper (Eve), and a cooperative jammer. All nodes may be equipped with multiple antennas. Traditionally, the jammer transmits Gaussian noise (GN) to enhance the security. However, using this approach, the jamming signal interferes not only with Eve but also with Bob. In this paper, besides the GN strategy, we assume that the jammer can also choose to use the encoded jammer (EJ) strategy, i.e., instead of GN, it transmits a codeword from an appropriate codebook. In certain conditions, the EJ scheme enables Bob to decode the jamming codeword and thus cancel the interference, while Eve remains unable to do so even if it knows all the codebooks. We first derive an inner bound on the system's secrecy rate under the strong secrecy metric, and then consider the maximization this bound through precoder design in a computationally efficient manner. In the single-input multi-output (SIMO) case, we prove that although non-convex, the power control problems can be optimally solved for both GN and EJ schemes. In the MIMO case, we propose to solve the problems using the matrix simultaneous diagonalization (SD) technique, which requires quite a low computational complexity. Simulation results show that by introducing a cooperative jammer with coding capability, and allowing it to switch between the GN and EJ schemes, a dramatic increase in the secrecy rate can be achieved. In addition, the proposed algorithms can significantly outperform the current state of the art benchmarks in terms of both secrecy rate and computation time.

This work presents a novel reconfigurable architecture for Low Latency Graph Neural Network (LL-GNN) designs for particle detectors, delivering unprecedented low latency performance. Incorporating FPGA-based GNNs into particle detectors presents a unique challenge since it requires sub-microsecond latency to deploy the networks for online event selection with a data rate of hundreds of terabytes per second in the Level-1 triggers at the CERN Large Hadron Collider experiments. This paper proposes a novel outer-product based matrix multiplication approach, which is enhanced by exploiting the structured adjacency matrix and a column-major data layout. Moreover, a fusion step is introduced to further reduce the end-to-end design latency by eliminating unnecessary boundaries. Furthermore, a GNN-specific algorithm-hardware co-design approach is presented which not only finds a design with a much better latency but also finds a high accuracy design under given latency constraints. To facilitate this, a customizable template for this low latency GNN hardware architecture has been designed and open-sourced, which enables the generation of low-latency FPGA designs with efficient resource utilization using a high-level synthesis tool. Evaluation results show that our FPGA implementation is up to 9.0 times faster and achieves up to 13.1 times higher power efficiency than a GPU implementation. Compared to the previous FPGA implementations, this work achieves 6.51 to 16.7 times lower latency. Moreover, the latency of our FPGA design is sufficiently low to enable deployment of GNNs in a sub-microsecond, real-time collider trigger system, enabling it to benefit from improved accuracy. The proposed LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.

Machine learning (ML) models are fundamentally shaped by data, and building inclusive ML systems requires significant considerations around how to design representative datasets. Yet, few novice-oriented ML modeling tools are designed to foster hands-on learning of dataset design practices, including how to design for data diversity and inspect for data quality. To this end, we outline a set of four data design practices (DDPs) for designing inclusive ML models and share how we designed a tablet-based application called Co-ML to foster learning of DDPs through a collaborative ML model building experience. With Co-ML, beginners can build image classifiers through a distributed experience where data is synchronized across multiple devices, enabling multiple users to iteratively refine ML datasets in discussion and coordination with their peers. We deployed Co-ML in a 2-week-long educational AIML Summer Camp, where youth ages 13-18 worked in groups to build custom ML-powered mobile applications. Our analysis reveals how multi-user model building with Co-ML, in the context of student-driven projects created during the summer camp, supported development of DDPs including incorporating data diversity, evaluating model performance, and inspecting for data quality. Additionally, we found that students' attempts to improve model performance often prioritized learnability over class balance. Through this work, we highlight how the combination of collaboration, model testing interfaces, and student-driven projects can empower learners to actively engage in exploring the role of data in ML systems.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

北京阿比特科技有限公司