Best rank-one approximation is one of the most fundamental tasks in tensor computation. In order to fully exploit modern multi-core parallel computers, it is necessary to develop decoupling algorithms for computing the best rank-one approximation of higher-order tensors at large scales. In this paper, we first build a bridge between the rank-one approximation of tensors and the eigenvector-dependent nonlinear eigenvalue problem (NEPv), and then develop an efficient decoupling algorithm, namely the higher-order self-consistent field (HOSCF) algorithm, inspired by the famous self-consistent field (SCF) iteration frequently used in computational chemistry. The convergence theory of the HOSCF algorithm and an estimation of the convergence speed are further presented. In addition, we propose an improved HOSCF (iHOSCF) algorithm that incorporates the Rayleigh quotient iteration, which can significantly accelerate the convergence of HOSCF. Numerical experiments show that the proposed algorithms can efficiently converge to the best rank-one approximation of both synthetic and real-world tensors and can scale with high parallel scalability on a modern parallel computer.
Gaussian elimination (GE) is the most used dense linear solver. Error analysis of GE with selected pivoting strategies on well-conditioned systems can focus on studying the behavior of growth factors. Although exponential growth is possible with GE with partial pivoting (GEPP), growth tends to stay much smaller in practice. Support for this behavior was provided recently by Huang and Tikhomirov's average-case analysis of GEPP, which showed GEPP growth factors for Gaussian matrices stay at most polynomial with very high probability. GE with complete pivoting (GECP) has also seen a lot of recent interest, with improvements to both lower and upper bounds on worst-case GECP growth provided by Bisain, Edelman and Urschel in 2023. We are interested in studying how GEPP and GECP behave on the same linear systems as well as studying large growth on particular subclasses of matrices, including orthogonal matrices. Moreover, as a means to better address the question of why large growth is rarely encountered, we further study matrices with a large difference in growth between using GEPP and GECP, and we explore how the smaller growth strategy dominates behavior in a small neighborhood of the initial matrix.
New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-B\'{e}zier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence which guarantees that all B-spline functions are at least $C^0$-continuous. It has good numerical behavior and has an asymptotically optimal computational complexity.
Generalized singular values (GSVs) play an essential role in the comparative analysis. In the real world data for comparative analysis, both data matrices are usually numerically low-rank. This paper proposes a randomized algorithm to first approximately extract bases and then calculate GSVs efficiently. The accuracy of both basis extration and comparative analysis quantities, angular distances, generalized fractions of the eigenexpression, and generalized normalized Shannon entropy, are rigursly analyzed. The proposed algorithm is applied to both synthetic data sets and the genome-scale expression data sets. Comparing to other GSVs algorithms, the proposed algorithm achieves the fastest runtime while preserving sufficient accuracy in comparative analysis.
We consider the bit complexity of computing Chow forms and their generalization to multiprojective spaces. We develop a deterministic algorithm using resultants and obtain a single exponential complexity upper bound. Earlier computational results for Chow forms were in the arithmetic complexity model, and our result represents the first bit complexity bound. We also extend our algorithm to Hurwitz forms in projective space, and explore connections between multiprojective Hurwitz forms and matroid theory. The motivation for our work comes from incidence geometry where intriguing computational algebra problems remain open.
We investigate one/two-sample mean tests for high-dimensional compositional data when the number of variables is comparable with the sample size, as commonly encountered in microbiome research. Existing methods mainly focus on max-type test statistics which are suitable for detecting sparse signals. However, in this paper, we introduce a novel approach using sum-type test statistics which are capable of detecting weak but dense signals. By establishing the asymptotic independence between the max-type and sum-type test statistics, we further propose a combined max-sum type test to cover both cases. We derived the asymptotic null distributions and power functions for these test statistics. Simulation studies demonstrate the superiority of our max-sum type test statistics which exhibit robust performance regardless of data sparsity.
Analyses of voting algorithms often overlook informational externalities shaping individual votes. For example, pre-polling information often skews voters towards candidates who may not be their top choice, but who they believe would be a worthwhile recipient of their vote. In this work, we aim to understand the role of external information in voting outcomes. We study this by analyzing (1) the probability that voting outcomes align with external information, and (2) the effect of external information on the total utility across voters, or social welfare. In practice, voting mechanisms elicit coarse information about voter utilities, such as ordinal preferences, which initially prevents us from directly analyzing the effect of informational externalities with standard voting mechanisms. To overcome this, we present an intermediary mechanism for learning how preferences change with external information which does not require eliciting full cardinal preferences. With this tool in hand, we find that voting mechanisms are generally more likely to select the alternative most favored by the external information, and when external information reflects the population's true preferences, social welfare increases in expectation.
Baker and Norine initiated the study of graph divisors as a graph-theoretic analogue of the Riemann-Roch theory for Riemann surfaces. One of the key concepts of graph divisor theory is the {\it rank} of a divisor on a graph. The importance of the rank is well illustrated by Baker's {\it Specialization lemma}, stating that the dimension of a linear system can only go up under specialization from curves to graphs, leading to a fruitful interaction between divisors on graphs and curves. Due to its decisive role, determining the rank is a central problem in graph divisor theory. Kiss and T\'othm\'eresz reformulated the problem using chip-firing games, and showed that computing the rank of a divisor on a graph is NP-hard via reduction from the Minimum Feedback Arc Set problem. In this paper, we strengthen their result by establishing a connection between chip-firing games and the Minimum Target Set Selection problem. As a corollary, we show that the rank is difficult to approximate to within a factor of $O(2^{\log^{1-\varepsilon}n})$ for any $\varepsilon > 0$ unless $P=NP$. Furthermore, assuming the Planted Dense Subgraph Conjecture, the rank is difficult to approximate to within a factor of $O(n^{1/4-\varepsilon})$ for any $\varepsilon>0$.
Dynamical low-rank (DLR) approximation has gained interest in recent years as a viable solution to the curse of dimensionality in the numerical solution of kinetic equations including the Boltzmann and Vlasov equations. These methods include the projector-splitting and Basis-update & Galerkin (BUG) DLR integrators, and have shown promise at greatly improving the computational efficiency of kinetic solutions. However, this often comes at the cost of conservation of charge, current and energy. In this work we show how a novel macro-micro decomposition may be used to separate the distribution function into two components, one of which carries the conserved quantities, and the other of which is orthogonal to them. We apply DLR approximation to the latter, and thereby achieve a clean and extensible approach to a conservative DLR scheme which retains the computational advantages of the base scheme. Moreover, our approach requires no change to the mechanics of the DLR approximation, so it is compatible with both the BUG family of integrators and the projector-splitting integrator which we use here. We describe a first-order integrator which can exactly conserve charge and either current or energy, as well as an integrator which exactly conserves charge and energy and exhibits second-order accuracy on our test problems. To highlight the flexibility of the proposed macro-micro decomposition, we implement a pair of velocity space discretizations, and verify the claimed accuracy and conservation properties on a suite of plasma benchmark problems.
Sparse recovery principles play an important role in solving many nonlinear ill-posed inverse problems. We investigate a variational framework with support Oracle for compressed sensing sparse reconstructions, where the available measurements are nonlinear and possibly corrupted by noise. A graph neural network, named Oracle-Net, is proposed to predict the support from the nonlinear measurements and is integrated into a regularized recovery model to enforce sparsity. The derived nonsmooth optimization problem is then efficiently solved through a constrained proximal gradient method. Error bounds on the approximate solution of the proposed Oracle-based optimization are provided in the context of the ill-posed Electrical Impedance Tomography problem. Numerical solutions of the EIT nonlinear inverse reconstruction problem confirm the potential of the proposed method which improves the reconstruction quality from undersampled measurements, under sparsity assumptions.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples is difficult and highly subjective through standard methods. Inference for high quantiles can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. We develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in the threshold estimation and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation, relative to the leading existing methods, and show how the method's effectiveness is not sensitive to the tuning parameters. We apply our method to the well-known, troublesome example of the River Nidd dataset.