亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-B\'{e}zier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence which guarantees that all B-spline functions are at least $C^0$-continuous. It has good numerical behavior and has an asymptotically optimal computational complexity.

相關內容

This study explores reduced-order modeling for analyzing the time-dependent diffusion-deformation of hydrogels. The full-order model describing hydrogel transient behavior consists of a coupled system of partial differential equations in which chemical potential and displacements are coupled. This system is formulated in a monolithic fashion and solved using the finite element method. We employ proper orthogonal decomposition as a model order reduction approach. The reduced-order model performance is tested through a benchmark problem on hydrogel swelling and a case study simulating co-axial printing. Then, we embed the reduced-order model into an optimization loop to efficiently identify the coupled problem's material parameters using full-field data. Finally, a study is conducted on the uncertainty propagation of the material parameter.

We give a short proof of almost sure invertibility of unsymmetric random Kansa collocation matrices by a class of analytic RBF vanishing at infinity, for the Poisson equation with Dirichlet boundary conditions. Such a class includes popular Positive Definite instances such as Gaussians, Generalized Inverse MultiQuadrics and Matern RBF. The proof works on general domains in any dimension, with any distribution of boundary collocation points and any continuous random distribution of internal collocation points.

We consider the problem of sampling a high dimensional multimodal target probability measure. We assume that a good proposal kernel to move only a subset of the degrees of freedoms (also known as collective variables) is known a priori. This proposal kernel can for example be built using normalizing flows. We show how to extend the move from the collective variable space to the full space and how to implement an accept-reject step in order to get a reversible chain with respect to a target probability measure. The accept-reject step does not require to know the marginal of the original measure in the collective variable (namely to know the free energy). The obtained algorithm admits several variants, some of them being very close to methods which have been proposed previously in the literature. We show how the obtained acceptance ratio can be expressed in terms of the work which appears in the Jarzynski-Crooks equality, at least for some variants. Numerical illustrations demonstrate the efficiency of the approach on various simple test cases, and allow us to compare the variants of the algorithm.

We propose a conforming finite element method to approximate the strong solution of the second order Hamilton-Jacobi-Bellman equation with Dirichlet boundary and coefficients satisfying Cordes condition. We show the convergence of the continuum semismooth Newton method for the fully nonlinear Hamilton-Jacobi-Bellman equation. Applying this linearization for the equation yields a recursive sequence of linear elliptic boundary value problems in nondivergence form. We deal numerically with such BVPs via the least-squares gradient recovery of Lakkis & Mousavi [2021, arxiv:1909.00491]. We provide an optimal-rate apriori and aposteriori error bounds for the approximation. The aposteriori error are used to drive an adaptive refinement procedure. We close with computer experiments on uniform and adaptive meshes to reconcile the theoretical findings.

In a regression model with multiple response variables and multiple explanatory variables, if the difference of the mean vectors of the response variables for different values of explanatory variables is always in the direction of the first principal eigenvector of the covariance matrix of the response variables, then it is called a multivariate allometric regression model. This paper studies the estimation of the first principal eigenvector in the multivariate allometric regression model. A class of estimators that includes conventional estimators is proposed based on weighted sum-of-squares matrices of regression sum-of-squares matrix and residual sum-of-squares matrix. We establish an upper bound of the mean squared error of the estimators contained in this class, and the weight value minimizing the upper bound is derived. Sufficient conditions for the consistency of the estimators are discussed in weak identifiability regimes under which the difference of the largest and second largest eigenvalues of the covariance matrix decays asymptotically and in ``large $p$, large $n$" regimes, where $p$ is the number of response variables and $n$ is the sample size. Several numerical results are also presented.

This paper focuses on the numerical scheme for delay-type stochastic McKean-Vlasov equations (DSMVEs) driven by fractional Brownian motion with Hurst parameter $H\in (0,1/2)\cup (1/2,1)$. The existence and uniqueness of the solutions to such DSMVEs whose drift coefficients contain polynomial delay terms are proved by exploting the Banach fixed point theorem. Then the propagation of chaos between interacting particle system and non-interacting system in $\mathcal{L}^p$ sense is shown. We find that even if the delay term satisfies the polynomial growth condition, the unmodified classical Euler-Maruyama scheme still can approximate the corresponding interacting particle system without the particle corruption. The convergence rates are revealed for $H\in (0,1/2)\cup (1/2,1)$. Finally, as an example that closely fits the original equation, a stochastic opinion dynamics model with both extrinsic memory and intrinsic memory is simulated to illustrate the plausibility of the theoretical result.

Data visualization and dimension reduction for regression between a general metric space-valued response and Euclidean predictors is proposed. Current Fr\'ech\'et dimension reduction methods require that the response metric space be continuously embeddable into a Hilbert space, which imposes restriction on the type of metric and kernel choice. We relax this assumption by proposing a Euclidean embedding technique which avoids the use of kernels. Under this framework, classical dimension reduction methods such as ordinary least squares and sliced inverse regression are extended. An extensive simulation experiment demonstrates the superior performance of the proposed method on synthetic data compared to existing methods where applicable. The real data analysis of factors influencing the distribution of COVID-19 transmission in the U.S. and the association between BMI and structural brain connectivity of healthy individuals are also investigated.

This paper investigates the convergence time of log-linear learning to an $\epsilon$-efficient Nash equilibrium (NE) in potential games. In such games, an efficient NE is defined as the maximizer of the potential function. Existing results are limited to potential games with stringent structural assumptions and entail exponential convergence times in $1/\epsilon$. Unaddressed so far, we tackle general potential games and prove the first finite-time convergence to an $\epsilon$-efficient NE. In particular, by using a problem-dependent analysis, our bound depends polynomially on $1/\epsilon$. Furthermore, we provide two extensions of our convergence result: first, we show that a variant of log-linear learning that requires a factor $A$ less feedback on the utility per round enjoys a similar convergence time; second, we demonstrate the robustness of our convergence guarantee if log-linear learning is subject to small perturbations such as alterations in the learning rule or noise-corrupted utilities.

In this paper, we propose a weak Galerkin finite element method (WG) for solving singularly perturbed convection-diffusion problems on a Bakhvalov-type mesh in 2D. Our method is flexible and allows the use of discontinuous approximation functions on the meshe. An error estimate is devised in a suitable norm and the optimal convergence order is obtained. Finally, numerical experiments are given to support the theory and to show the efficiency of the proposed method.

Many flexible families of positive random variables exhibit non-closed forms of the density and distribution functions and this feature is considered unappealing for modelling purposes. However, such families are often characterized by a simple expression of the corresponding Laplace transform. Relying on the Laplace transform, we propose to carry out parameter estimation and goodness-of-fit testing for a general class of non-standard laws. We suggest a novel data-driven inferential technique, providing parameter estimators and goodness-of-fit tests, whose large-sample properties are derived. The implementation of the method is specifically considered for the positive stable and Tweedie distributions. A Monte Carlo study shows good finite-sample performance of the proposed technique for such laws.

北京阿比特科技有限公司