Reconfigurable intelligent surfaces (RIS) can be crucial in next-generation communication systems. However, designing the {RIS} phases according to the instantaneous channel state information (CSI) can be challenging in practice due to the short coherent time of the channel. In this regard, we propose a novel algorithm based on the channel statistics of massive multiple input multiple output systems rather than the instantaneous {CSI}. The beamforming at the base station (BS), power allocation of the users, and phase shifts at the RIS elements are optimized to maximize the minimum signal-to-interference and noise ratio (SINR), guaranteeing fair operation among various users. In particular, we design the RIS phases by leveraging the asymptotic deterministic equivalent of the minimum {SINR} that depends only on the channel statistics. This significantly reduces the computational complexity and the amount of controlling data between the {BS} and {RIS} for updating the phases. This setup is also useful for electromagnetic fields (EMF)-aware systems with constraints on the maximum user's exposure to EMF. The numerical results show that the proposed algorithms achieve more than $100 \%$ gain in terms of minimum SINR, compared to a system with random RIS phase shifts, when $40$ RIS elements, $20$ antennas at the BS and $10$ users, are considered.
Recent works have shown that Large Language Models (LLMs) could empower traditional neuro-symbolic models via programming capabilities to translate language into module descriptions, thus achieving strong visual reasoning results while maintaining the model's transparency and efficiency. However, these models usually exhaustively generate the entire code snippet given each new instance of a task, which is extremely ineffective. We propose generative neuro-symbolic visual reasoning by growing and reusing modules. Specifically, our model consists of three unique stages, module initialization, module generation, and module execution. First, given a vision-language task, we adopt LLMs to examine whether we could reuse and grow over established modules to handle this new task. If not, we initialize a new module needed by the task and specify the inputs and outputs of this new module. After that, the new module is created by querying LLMs to generate corresponding code snippets that match the requirements. In order to get a better sense of the new module's ability, we treat few-shot training examples as test cases to see if our new module could pass these cases. If yes, the new module is added to the module library for future reuse. Finally, we evaluate the performance of our model on the testing set by executing the parsed programs with the newly made visual modules to get the results. We find the proposed model possesses several advantages. First, it performs competitively on standard tasks like visual question answering and referring expression comprehension; Second, the modules learned from one task can be seamlessly transferred to new tasks; Last but not least, it is able to adapt to new visual reasoning tasks by observing a few training examples and reusing modules.
Building efficient, accurate and generalizable reduced order models of developed turbulence remains a major challenge. This manuscript approaches this problem by developing a hierarchy of parameterized reduced Lagrangian models for turbulent flows, and investigates the effects of enforcing physical structure through Smoothed Particle Hydrodynamics (SPH) versus relying on neural networks (NN)s as universal function approximators. Starting from Neural Network (NN) parameterizations of a Lagrangian acceleration operator, this hierarchy of models gradually incorporates a weakly compressible and parameterized SPH framework, which enforces physical symmetries, such as Galilean, rotational and translational invariances. Within this hierarchy, two new parameterized smoothing kernels are developed in order to increase the flexibility of the learn-able SPH simulators. For each model we experiment with different loss functions which are minimized using gradient based optimization, where efficient computations of gradients are obtained by using Automatic Differentiation (AD) and Sensitivity Analysis (SA). Each model within the hierarchy is trained on two data sets associated with weekly compressible Homogeneous Isotropic Turbulence (HIT): (1) a validation set using weakly compressible SPH; and (2) a high fidelity set from Direct Numerical Simulations (DNS). Numerical evidence shows that encoding more SPH structure improves generalizability to different turbulent Mach numbers and time shifts, and that including the novel parameterized smoothing kernels improves the accuracy of SPH at the resolved scales.
We consider the problem of solving a family of parametric mixed-integer linear optimization problems where some entries in the input data change. We introduce the concept of cutting-plane layer (CPL), i.e., a differentiable cutting-plane generator mapping the problem data and previous iterates to cutting planes. We propose a CPL implementation to generate split cuts, and by combining several CPLs, we devise a differentiable cutting-plane algorithm that exploits the repeated nature of parametric instances. In an offline phase, we train our algorithm by updating the internal parameters controlling the CPLs, thus altering cut generation. Once trained, our algorithm computes, with predictable execution times and a fixed number of cuts, solutions with low integrality gaps. Preliminary computational tests show that our algorithm generalizes on unseen instances and captures underlying parametric structures.
Estimating a prediction function is a fundamental component of many data analyses. The Super Learner ensemble, a particular implementation of stacking, has desirable theoretical properties and has been used successfully in many applications. Dimension reduction can be accomplished by using variable screening algorithms, including the lasso, within the ensemble prior to fitting other prediction algorithms. However, the performance of a Super Learner using the lasso for dimension reduction has not been fully explored in cases where the lasso is known to perform poorly. We provide empirical results that suggest that a diverse set of candidate screening algorithms should be used to protect against poor performance of any one screen, similar to the guidance for choosing a library of prediction algorithms for the Super Learner.
Imaging through perturbed multimode fibres based on deep learning has been widely researched. However, existing methods mainly use target-speckle pairs in different configurations. It is challenging to reconstruct targets without trained networks. In this paper, we propose a physics-assisted, unsupervised, learning-based fibre imaging scheme. The role of the physical prior is to simplify the mapping relationship between the speckle pattern and the target image, thereby reducing the computational complexity. The unsupervised network learns target features according to the optimized direction provided by the physical prior. Therefore, the reconstruction process of the online learning only requires a few speckle patterns and unpaired targets. The proposed scheme also increases the generalization ability of the learning-based method in perturbed multimode fibres. Our scheme has the potential to extend the application of multimode fibre imaging.
Reconfigurable intelligent surfaces (RISs) are a promising technology to enable smart radio environments. However, integrating RISs into wireless networks also leads to substantial complexity for network management. This work investigates heuristic algorithms and applications to optimize RIS-aided wireless networks, including greedy algorithms, meta-heuristic algorithms, and matching theory. Moreover, we combine heuristic algorithms with machine learning (ML), and propose three heuristic-aided ML algorithms, namely heuristic deep reinforcement learning (DRL), heuristic-aided supervised learning, and heuristic hierarchical learning. Finally, a case study shows that heuristic DRL can achieve higher data rates and faster convergence than conventional deep Q-networks (DQN). This work provides a new perspective for optimizing RIS-aided wireless networks by taking advantage of heuristic algorithms and ML.
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.
The computing in the network (COIN) paradigm has emerged as a potential solution for computation-intensive applications like the metaverse by utilizing unused network resources. The blockchain (BC) guarantees task-offloading privacy, but cost reduction, queueing delays, and redundancy elimination remain open problems. This paper presents a redundancy-aware BC-based approach for the metaverse's partial computation offloading (PCO). Specifically, we formulate a joint BC redundancy factor (BRF) and PCO problem to minimize computation costs, maximize incentives, and meet delay and BC offloading constraints. We proved this problem is NP-hard and transformed it into two subproblems based on their temporal correlation: real-time PCO and Markov decision process-based BRF. We formulated the PCO problem as a multiuser game, proposed a decentralized algorithm for Nash equilibrium under any BC redundancy state, and designed a double deep Q-network-based algorithm for the optimal BRF policy. The BRF strategy is updated periodically based on user computation demand and network status to assist the PCO algorithm. The experimental results suggest that the proposed approach outperforms existing schemes, resulting in a remarkable 47% reduction in cost overhead, delivering approximately 64% higher rewards, and achieving convergence in just a few training episodes.
Purpose: To provide a simulation framework for routine neuroimaging test data, which allows for "stress testing" of deep segmentation networks against acquisition shifts that commonly occur in clinical practice for T2 weighted (T2w) fluid attenuated inversion recovery (FLAIR) Magnetic Resonance Imaging (MRI) protocols. Approach: The approach simulates "acquisition shift derivatives" of MR images based on MR signal equations. Experiments comprise the validation of the simulated images by real MR scans and example stress tests on state-of-the-art MS lesion segmentation networks to explore a generic model function to describe the F1 score in dependence of the contrast-affecting sequence parameters echo time (TE) and inversion time (TI). Results: The differences between real and simulated images range up to 19 % in gray and white matter for extreme parameter settings. For the segmentation networks under test the F1 score dependency on TE and TI can be well described by quadratic model functions (R^2 > 0.9). The coefficients of the model functions indicate that changes of TE have more influence on the model performance than TI. Conclusions: We show that these deviations are in the range of values as may be caused by erroneous or individual differences of relaxation times as described by literature. The coefficients of the F1 model function allow for quantitative comparison of the influences of TE and TI. Limitations arise mainly from tissues with the low baseline signal (like CSF) and when the protocol contains contrast-affecting measures that cannot be modelled due to missing information in the DICOM header.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.