亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, a recently proposed high-cycle fatigue cohesive zone model, which covers crack initiation and propagation with limited input parameters, is embedded in a robust and efficient numerical framework for simulating progressive failure in composite laminates under fatigue loading. The fatigue cohesive zone model is enhanced with an implicit time integration scheme of the fatigue damage variable which allows for larger cycle increments and more efficient analyses. The method is combined with an adaptive strategy for determining the cycle increment based on global convergence rates. Moreover, a consistent material tangent stiffness matrix has been derived by fully linearizing the underlying mixed-mode quasi-static model and the fatigue damage update. The enhanced fatigue cohesive zone model is used to describe matrix cracking and delamination in laminates. In order to allow for matrix cracks to initiate at arbitrary locations and to avoid complex and costly mesh generation, the phantom node version of the eXtended finite element method (XFEM) is employed. For the insertion of new crack segments, an XFEM fatigue crack insertion criterion is presented, which is consistent with the fatigue cohesive zone formulation. It is shown with numerical examples that the improved fatigue damage update enhances the accuracy, efficiency and robustness of the numerical simulations significantly. The numerical framework is applied to the simulation of progressive fatigue failure in an open-hole [$\pm$45]-laminate. It is demonstrated that the numerical model is capable of accurately and efficiently simulating the complete failure process from distributed damage to localized failure.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INFORMS · Performer · 估計/估計量 · ·
2023 年 11 月 7 日

In credit risk analysis, survival models with fixed and time-varying covariates are widely used to predict a borrower's time-to-event. When the time-varying drivers are endogenous, modelling jointly the evolution of the survival time and the endogenous covariates is the most appropriate approach, also known as the joint model for longitudinal and survival data. In addition to the temporal component, credit risk models can be enhanced when including borrowers' geographical information by considering spatial clustering and its variation over time. We propose the Spatio-Temporal Joint Model (STJM) to capture spatial and temporal effects and their interaction. This Bayesian hierarchical joint model reckons the survival effect of unobserved heterogeneity among borrowers located in the same region at a particular time. To estimate the STJM model for large datasets, we consider the Integrated Nested Laplace Approximation (INLA) methodology. We apply the STJM to predict the time to full prepayment on a large dataset of 57,258 US mortgage borrowers with more than 2.5 million observations. Empirical results indicate that including spatial effects consistently improves the performance of the joint model. However, the gains are less definitive when we additionally include spatio-temporal interactions.

We combine the recent relaxation approach with multiderivative Runge-Kutta methods to preserve conservation or dissipation of entropy functionals for ordinary and partial differential equations. Relaxation methods are minor modifications of explicit and implicit schemes, requiring only the solution of a single scalar equation per time step in addition to the baseline scheme. We demonstrate the robustness of the resulting methods for a range of test problems including the 3D compressible Euler equations. In particular, we point out improved error growth rates for certain entropy-conservative problems including nonlinear dispersive wave equations.

In this paper, neural network approximation methods are developed for elliptic partial differential equations with multi-frequency solutions. Neural network work approximation methods have advantages over classical approaches in that they can be applied without much concerns on the form of the differential equations or the shape or dimension of the problem domain. When applied to problems with multi-frequency solutions, the performance and accuracy of neural network approximation methods are strongly affected by the contrast of the high- and low-frequency parts in the solutions. To address this issue, domain scaling and residual correction methods are proposed. The efficiency and accuracy of the proposed methods are demonstrated for multi-frequency model problems.

Scale-free dynamics, formalized by selfsimilarity, provides a versatile paradigm massively and ubiquitously used to model temporal dynamics in real-world data. However, its practical use has mostly remained univariate so far. By contrast, modern applications often demand multivariate data analysis. Accordingly, models for multivariate selfsimilarity were recently proposed. Nevertheless, they have remained rarely used in practice because of a lack of available robust estimation procedures for the vector of selfsimilarity parameters. Building upon recent mathematical developments, the present work puts forth an efficient estimation procedure based on the theoretical study of the multiscale eigenstructure of the wavelet spectrum of multivariate selfsimilar processes. The estimation performance is studied theoretically in the asymptotic limits of large scale and sample sizes, and computationally for finite-size samples. As a practical outcome, a fully operational and documented multivariate signal processing estimation toolbox is made freely available and is ready for practical use on real-world data. Its potential benefits are illustrated in epileptic seizure prediction from multi-channel EEG data.

We collect robust proposals given in the field of regression models with heteroscedastic errors. Our motivation stems from the fact that the practitioner frequently faces the confluence of two phenomena in the context of data analysis: non--linearity and heteroscedasticity. The impact of heteroscedasticity on the precision of the estimators is well--known, however the conjunction of these two phenomena makes handling outliers more difficult. An iterative procedure to estimate the parameters of a heteroscedastic non--linear model is considered. The studied estimators combine weighted $MM-$regression estimators, to control the impact of high leverage points, and a robust method to estimate the parameters of the variance function.

Stress prediction in porous materials and structures is challenging due to the high computational cost associated with direct numerical simulations. Convolutional Neural Network (CNN) based architectures have recently been proposed as surrogates to approximate and extrapolate the solution of such multiscale simulations. These methodologies are usually limited to 2D problems due to the high computational cost of 3D voxel based CNNs. We propose a novel geometric learning approach based on a Graph Neural Network (GNN) that efficiently deals with three-dimensional problems by performing convolutions over 2D surfaces only. Following our previous developments using pixel-based CNN, we train the GNN to automatically add local fine-scale stress corrections to an inexpensively computed coarse stress prediction in the porous structure of interest. Our method is Bayesian and generates densities of stress fields, from which credible intervals may be extracted. As a second scientific contribution, we propose to improve the extrapolation ability of our network by deploying a strategy of online physics-based corrections. Specifically, we condition the posterior predictions of our probabilistic predictions to satisfy partial equilibrium at the microscale, at the inference stage. This is done using an Ensemble Kalman algorithm, to ensure tractability of the Bayesian conditioning operation. We show that this innovative methodology allows us to alleviate the effect of undesirable biases observed in the outputs of the uncorrected GNN, and improves the accuracy of the predictions in general.

This paper concerns the approximation of smooth, high-dimensional functions from limited samples using polynomials. This task lies at the heart of many applications in computational science and engineering - notably, some of those arising from parametric modelling and computational uncertainty quantification. It is common to use Monte Carlo sampling in such applications, so as not to succumb to the curse of dimensionality. However, it is well known that such a strategy is theoretically suboptimal. Specifically, there are many polynomial spaces of dimension $n$ for which the sample complexity scales log-quadratically, i.e., like $c \cdot n^2 \cdot \log(n)$ as $n \rightarrow \infty$. This well-documented phenomenon has led to a concerted effort over the last decade to design improved, and moreover, near-optimal strategies, whose sample complexities scale log-linearly, or even linearly in $n$. In this work we demonstrate that Monte Carlo is actually a perfectly good strategy in high dimensions, despite its apparent suboptimality. We first document this phenomenon empirically via a systematic set of numerical experiments. Next, we present a theoretical analysis that rigorously justifies this fact in the case of holomorphic functions of infinitely-many variables. We show that there is a least-squares approximation based on $m$ Monte Carlo samples whose error decays algebraically fast in $m/\log(m)$, with a rate that is the same as that of the best $n$-term polynomial approximation. This result is non-constructive, since it assumes knowledge of a suitable polynomial subspace in which to perform the approximation. We next present a compressed sensing-based scheme that achieves the same rate, except for a larger polylogarithmic factor. This scheme is practical, and numerically it performs as well as or better than well-known adaptive least-squares schemes.

In this work, we propose a global model selection criterion to estimate the graph of conditional dependencies of a random vector based on a finite sample. By global criterion, we mean optimizing a function over the entire set of possible graphs, eliminating the need to estimate the individual neighborhoods and subsequently combine them to estimate the graph. We prove the almost sure convergence of the graph estimator. This convergence holds provided the data is a realization of a multivariate stochastic process that satisfies a mixing condition. To the best of our knowledge, these are the first results to show the consistency of a model selection criterion for Markov random fields on graphs under non-independent data.

We establish conditions under which latent causal graphs are nonparametrically identifiable and can be reconstructed from unknown interventions in the latent space. Our primary focus is the identification of the latent structure in measurement models without parametric assumptions such as linearity or Gaussianity. Moreover, we do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed. This extends a recent line of work on learning causal representations from observations and interventions. The proofs are constructive and introduce two new graphical concepts -- imaginary subsets and isolated edges -- that may be useful in their own right. As a matter of independent interest, the proofs also involve a novel characterization of the limits of edge orientations within the equivalence class of DAGs induced by unknown interventions. These are the first results to characterize the conditions under which causal representations are identifiable without making any parametric assumptions in a general setting with unknown interventions and without faithfulness.

This paper investigates the multiple testing problem for high-dimensional sparse binary sequences, motivated by the crowdsourcing problem in machine learning. We study the empirical Bayes approach for multiple testing on the high-dimensional Bernoulli model with a conjugate spike and uniform slab prior. We first show that the hard thresholding rule deduced from the posterior distribution is suboptimal. Consequently, the $\ell$-value procedure constructed using this posterior tends to be overly conservative in estimating the false discovery rate (FDR). We then propose two new procedures based on $\adj\ell$-values and $q$-values to correct this issue. Sharp frequentist theoretical results are obtained, demonstrating that both procedures can effectively control the FDR under sparsity. Numerical experiments are conducted to validate our theory in finite samples. To our best knowledge, this work provides the first uniform FDR control result in multiple testing for high-dimensional sparse binary data.

北京阿比特科技有限公司