亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The NeuroEvolution of Augmenting Topologies (NEAT) algorithm has received considerable recognition in the field of neuroevolution. Its effectiveness is derived from initiating with simple networks and incrementally evolving both their topologies and weights. Although its capability across various challenges is evident, the algorithm's computational efficiency remains an impediment, limiting its scalability potential. In response, this paper introduces a tensorization method for the NEAT algorithm, enabling the transformation of its diverse network topologies and associated operations into uniformly shaped tensors for computation. This advancement facilitates the execution of the NEAT algorithm in a parallelized manner across the entire population. Furthermore, we develop TensorNEAT, a library that implements the tensorized NEAT algorithm and its variants, such as CPPN and HyperNEAT. Building upon JAX, TensorNEAT promotes efficient parallel computations via automated function vectorization and hardware acceleration. Moreover, the TensorNEAT library supports various benchmark environments including Gym, Brax, and gymnax. Through evaluations across a spectrum of robotics control environments in Brax, TensorNEAT achieves up to 500x speedups compared to the existing implementations such as NEAT-Python. Source codes are available at: //github.com/EMI-Group/tensorneat.

相關內容

Ordinal regression (OR) is classification of ordinal data in which the underlying categorical target variable has a natural ordinal relation for the underlying explanatory variable. For $K$-class OR tasks, threshold methods learn a one-dimensional transformation (1DT) of the explanatory variable so that 1DT values for observations of the explanatory variable preserve the order of label values $1,\ldots,K$ for corresponding observations of the target variable well, and then assign a label prediction to the learned 1DT through threshold labeling, namely, according to the rank of an interval to which the 1DT belongs among intervals on the real line separated by $(K-1)$ threshold parameters. In this study, we propose a parallelizable algorithm to find the optimal threshold labeling, which was developed in previous research, and derive sufficient conditions for that algorithm to successfully output the optimal threshold labeling. In a numerical experiment we performed, the computation time taken for the whole learning process of a threshold method with the optimal threshold labeling could be reduced to approximately 60\,\% by using the proposed algorithm with parallel processing compared to using an existing algorithm based on dynamic programming.

Disentangling model activations into meaningful features is a central problem in interpretability. However, the absence of ground-truth for these features in realistic scenarios makes validating recent approaches, such as sparse dictionary learning, elusive. To address this challenge, we propose a framework for evaluating feature dictionaries in the context of specific tasks, by comparing them against \emph{supervised} feature dictionaries. First, we demonstrate that supervised dictionaries achieve excellent approximation, control, and interpretability of model computations on the task. Second, we use the supervised dictionaries to develop and contextualize evaluations of unsupervised dictionaries along the same three axes. We apply this framework to the indirect object identification (IOI) task using GPT-2 Small, with sparse autoencoders (SAEs) trained on either the IOI or OpenWebText datasets. We find that these SAEs capture interpretable features for the IOI task, but they are less successful than supervised features in controlling the model. Finally, we observe two qualitative phenomena in SAE training: feature occlusion (where a causally relevant concept is robustly overshadowed by even slightly higher-magnitude ones in the learned features), and feature over-splitting (where binary features split into many smaller, less interpretable features). We hope that our framework will provide a useful step towards more objective and grounded evaluations of sparse dictionary learning methods.

The exploration of network structures through the lens of graph theory has become a cornerstone in understanding complex systems across diverse fields. Identifying densely connected subgraphs within larger networks is crucial for uncovering functional modules in biological systems, cohesive groups within social networks, and critical paths in technological infrastructures. The most representative approach, the SM algorithm, cannot locate subgraphs with large sizes, therefore cannot identify dense subgraphs; while the SA algorithm previously used by researchers combines simulated annealing and efficient moves for the Markov chain. However, the global optima cannot be guaranteed to be located by the simulated annealing methods including SA unless a logarithmic cooling schedule is used. To this end, our study introduces and evaluates the performance of the Simulated Annealing Algorithm (SAA), which combines simulated annealing with the stochastic approximation Monte Carlo algorithm. The performance of SAA against two other numerical algorithms-SM and SA, is examined in the context of identifying these critical subgraph structures using simulated graphs with embeded cliques. We have found that SAA outperforms both SA and SM by 1) the number of iterations to find the densest subgraph and 2) the percentage of time the algorithm is able to find a clique after 10,000 iterations, and 3) computation time. The promising result of the SAA algorithm could offer a robust tool for dissecting complex systems and potentially transforming our approach to solving problems in interdisciplinary fields.

The classical theory of Kosambi-Cartan-Chern (KCC) developed in differential geometry provides a powerful method for analyzing the behaviors of dynamical systems. In the KCC theory, the properties of a dynamical system are described in terms of five geometrical invariants, of which the second corresponds to the so-called Jacobi stability of the system. Different from that of the Lyapunov stability that has been studied extensively in the literature, the analysis of the Jacobi stability has been investigated more recently using geometrical concepts and tools. It turns out that the existing work on the Jacobi stability analysis remains theoretical and the problem of algorithmic and symbolic treatment of Jacobi stability analysis has yet to be addressed. In this paper, we initiate our study on the problem for a class of ODE systems of arbitrary dimension and propose two algorithmic schemes using symbolic computation to check whether a nonlinear dynamical system may exhibit Jacobi stability. The first scheme, based on the construction of the complex root structure of a characteristic polynomial and on the method of quantifier elimination, is capable of detecting the existence of the Jacobi stability of the given dynamical system. The second algorithmic scheme exploits the method of semi-algebraic system solving and allows one to determine conditions on the parameters for a given dynamical system to have a prescribed number of Jacobi stable fixed points. Several examples are presented to demonstrate the effectiveness of the proposed algorithmic schemes.

The saturation effect refers to the phenomenon that the kernel ridge regression (KRR) fails to achieve the information theoretical lower bound when the smoothness of the underground truth function exceeds certain level. The saturation effect has been widely observed in practices and a saturation lower bound of KRR has been conjectured for decades. In this paper, we provide a proof of this long-standing conjecture.

In the literature on Kleene algebra, a number of variants have been proposed which impose additional structure specified by a theory, such as Kleene algebra with tests (KAT) and the recent Kleene algebra with observations (KAO), or make specific assumptions about certain constants, as for instance in NetKAT. Many of these variants fit within the unifying perspective offered by Kleene algebra with hypotheses, which comes with a canonical language model constructed from a given set of hypotheses. For the case of KAT, this model corresponds to the familiar interpretation of expressions as languages of guarded strings. A relevant question therefore is whether Kleene algebra together with a given set of hypotheses is complete with respect to its canonical language model. In this paper, we revisit, combine and extend existing results on this question to obtain tools for proving completeness in a modular way. We showcase these tools by giving new and modular proofs of completeness for KAT, KAO and NetKAT, and we prove completeness for new variants of KAT: KAT extended with a constant for the full relation, KAT extended with a converse operation, and a version of KAT where the collection of tests only forms a distributive lattice.

After coarse-graining a complex system, the dynamics of its macro-state may exhibit more pronounced causal effects than those of its micro-state. This phenomenon, known as causal emergence, is quantified by the indicator of effective information. However, two challenges confront this theory: the absence of well-developed frameworks in continuous stochastic dynamical systems and the reliance on coarse-graining methodologies. In this study, we introduce an exact theoretic framework for causal emergence within linear stochastic iteration systems featuring continuous state spaces and Gaussian noise. Building upon this foundation, we derive an analytical expression for effective information across general dynamics and identify optimal linear coarse-graining strategies that maximize the degree of causal emergence when the dimension averaged uncertainty eliminated by coarse-graining has an upper bound. Our investigation reveals that the maximal causal emergence and the optimal coarse-graining methods are primarily determined by the principal eigenvalues and eigenvectors of the dynamic system's parameter matrix, with the latter not being unique. To validate our propositions, we apply our analytical models to three simplified physical systems, comparing the outcomes with numerical simulations, and consistently achieve congruent results.

Autonomous Dynamic System (DS)-based algorithms hold a pivotal and foundational role in the field of Learning from Demonstration (LfD). Nevertheless, they confront the formidable challenge of striking a delicate balance between achieving precision in learning and ensuring the overall stability of the system. In response to this substantial challenge, this paper introduces a novel DS algorithm rooted in neural network technology. This algorithm not only possesses the capability to extract critical insights from demonstration data but also demonstrates the capacity to learn a candidate Lyapunov energy function that is consistent with the provided data. The model presented in this paper employs a straightforward neural network architecture that excels in fulfilling a dual objective: optimizing accuracy while simultaneously preserving global stability. To comprehensively evaluate the effectiveness of the proposed algorithm, rigorous assessments are conducted using the LASA dataset, further reinforced by empirical validation through a robotic experiment.

We propose a Cholesky factor parameterization of correlation matrices that facilitates a priori restrictions on the correlation matrix. It is a smooth and differentiable transform that allows additional boundary constraints on the correlation values. Our particular motivation is random sampling under positivity constraints on the space of correlation matrices using MCMC methods.

Runtime analysis, as a branch of the theory of AI, studies how the number of iterations algorithms take before finding a solution (its runtime) depends on the design of the algorithm and the problem structure. Drift analysis is a state-of-the-art tool for estimating the runtime of randomised algorithms, such as evolutionary and bandit algorithms. Drift refers roughly to the expected progress towards the optimum per iteration. This paper considers the problem of deriving concentration tail-bounds on the runtime/regret of algorithms. It provides a novel drift theorem that gives precise exponential tail-bounds given positive, weak, zero and even negative drift. Previously, such exponential tail bounds were missing in the case of weak, zero, or negative drift. Our drift theorem can be used to prove a strong concentration of the runtime/regret of algorithms in AI. For example, we prove that the regret of the \rwab bandit algorithm is highly concentrated, while previous analyses only considered the expected regret. This means that the algorithm obtains the optimum within a given time frame with high probability, i.e. a form of algorithm reliability. Moreover, our theorem implies that the time needed by the co-evolutionary algorithm RLS-PD to obtain a Nash equilibrium in a \bilinear max-min-benchmark problem is highly concentrated. However, we also prove that the algorithm forgets the Nash equilibrium, and the time until this occurs is highly concentrated. This highlights a weakness in the RLS-PD which should be addressed by future work.

北京阿比特科技有限公司