亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The industry 4.0 is leveraging digital technologies and machine learning techniques to connect and optimize manufacturing processes. Central to this idea is the ability to transform raw data into human understandable knowledge for reliable data-driven decision-making. Convolutional Neural Networks (CNNs) have been instrumental in processing image data, yet, their ``black box'' nature complicates the understanding of their prediction process. In this context, recent advances in the field of eXplainable Artificial Intelligence (XAI) have proposed the extraction and localization of concepts, or which visual cues intervene on the prediction process of CNNs. This paper tackles the application of concept extraction (CE) methods to industry 4.0 scenarios. To this end, we modify a recently developed technique, ``Extracting Concepts with Local Aggregated Descriptors'' (ECLAD), improving its scalability. Specifically, we propose a novel procedure for calculating concept importance, utilizing a wrapper function designed for CNNs. This process is aimed at decreasing the number of times each image needs to be evaluated. Subsequently, we demonstrate the potential of CE methods, by applying them in three industrial use cases. We selected three representative use cases in the context of quality control for material design (tailored textiles), manufacturing (carbon fiber reinforcement), and maintenance (photovoltaic module inspection). In these examples, CE was able to successfully extract and locate concepts directly related to each task. This is, the visual cues related to each concept, coincided with what human experts would use to perform the task themselves, even when the visual cues were entangled between multiple classes. Through empirical results, we show that CE can be applied for understanding CNNs in an industrial context, giving useful insights that can relate to domain knowledge.

相關內容

Processing 是一(yi)門開源編(bian)程語言(yan)和(he)與之配套的集成開發環境(IDE)的名稱。Processing 在(zai)電子藝術和(he)視(shi)覺(jue)設計社區被用(yong)來教授編(bian)程基礎,并運用(yong)于大量的新媒(mei)體和(he)互動(dong)藝術作品中(zhong)。

In recent years, many NLP studies have focused solely on performance improvement. In this work, we focus on the linguistic and scientific aspects of NLP. We use the task of generating referring expressions in context (REG-in-context) as a case study and start our analysis from GREC, a comprehensive set of shared tasks in English that addressed this topic over a decade ago. We ask what the performance of models would be if we assessed them (1) on more realistic datasets, and (2) using more advanced methods. We test the models using different evaluation metrics and feature selection experiments. We conclude that GREC can no longer be regarded as offering a reliable assessment of models' ability to mimic human reference production, because the results are highly impacted by the choice of corpus and evaluation metrics. Our results also suggest that pre-trained language models are less dependent on the choice of corpus than classic Machine Learning models, and therefore make more robust class predictions.

Modern semiconductor manufacturing involves intricate production processes consisting of hundreds of operations, which can take several months from lot release to completion. The high-tech machines used in these processes are diverse, operate on individual wafers, lots, or batches in multiple stages, and necessitate product-specific setups and specialized maintenance procedures. This situation is different from traditional job-shop scheduling scenarios, which have less complex production processes and machines, and mainly focus on solving highly combinatorial but abstract scheduling problems. In this work, we address the scheduling of realistic semiconductor manufacturing processes by modeling their specific requirements using hybrid Answer Set Programming with difference logic, incorporating flexible machine processing, setup, batching and maintenance operations. Unlike existing methods that schedule semiconductor manufacturing processes locally with greedy heuristics or by independently optimizing specific machine group allocations, we examine the potentials of large-scale scheduling subject to multiple optimization objectives.

Stream processing has become a critical component in the architecture of modern applications. With the exponential growth of data generation from sources such as the Internet of Things, business intelligence, and telecommunications, real-time processing of unbounded data streams has become a necessity. DSP systems provide a solution to this challenge, offering high horizontal scalability, fault-tolerant execution, and the ability to process data streams from multiple sources in a single DSP job. Often enough though, data streams need to be enriched with extra information for correct processing, which introduces additional dependencies and potential bottlenecks. In this paper, we present an in-depth evaluation of data enrichment methods for DSP systems and identify the different use cases for stream processing in modern systems. Using a representative DSP system and conducting the evaluation in a realistic cloud environment, we found that outsourcing enrichment data to the DSP system can improve performance for specific use cases. However, this increased resource consumption highlights the need for stream processing solutions specifically designed for the performance-intensive workloads of cloud-based applications.

Physical-layer authentication is a popular alternative to the conventional key-based authentication for internet of things (IoT) devices due to their limited computational capacity and battery power. However, this approach has limitations due to poor robustness under channel fluctuations, reconciliation overhead, and no clear safeguard distance to ensure the secrecy of the generated authentication keys. In this regard, we propose a novel, secure, and lightweight continuous authentication scheme for IoT device authentication. Our scheme utilizes the inherent properties of the IoT devices transmission model as its source for seed generation and device authentication. Specifically, our proposed scheme provides continuous authentication by checking the access time slots and spreading sequences of the IoT devices instead of repeatedly generating and verifying shared keys. Due to this, access to a coherent key is not required in our proposed scheme, resulting in the concealment of the seed information from attackers. Our proposed authentication scheme for IoT devices demonstrates improved performance compared to the benchmark schemes relying on physical-channel. Our empirical results find a near threefold decrease in misdetection rate of illegitimate devices and close to zero false alarm rate in various system settings with varied numbers of active devices up to 200 and signal-to-noise ratio from 0 dB to 30 dB. Our proposed authentication scheme also has a lower computational complexity of at least half the computational cost of the benchmark schemes based on support vector machine and binary hypothesis testing in our studies. This further corroborates the practicality of our scheme for IoT deployments.

As decentralized money market protocols continue to grow in value locked, there have been a number of optimizations proposed for improving capital efficiency. One set of proposals from Euler Finance and Mars Protocol is to have an interest rate curve that is a proportional-integral-derivative (PID) controller. In this paper, we demonstrate attacks on proportional and proportional-integral controlled interest rate curves. The attack allows one to manipulate the interest rate curve to take a higher proportion of the earned yield than their pro-rata share of the lending pool. We conclude with an argument that PID interest rate curves can actually \emph{reduce} capital efficiency (due to attack mitigations) unless supply and demand elasticity to rate changes are sufficiently high.

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

北京阿比特科技有限公司