亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a massive multiple-input-multiple-output (mMIMO) testbed that is capable of mimicking realistic 5G new radio (NR) base station (BS) beamforming performance has been utilised to gather experimental-based evidence of 5G BS RF-EMF exposure within a real-world indoor environment. The mMIMO testbed has up to 128 RF channels with user-programmable software defined radio (SDR) capability. The stochastic nature of the 5G NR mMIMO system has been statistically assessed by evaluating the spatial variation of the RF-EMF exposure surrounding the mMIMO testbed when taking into account different beam profiles and data rates. Several other factors that influence the RF-EMF of mMIMO system have also being considered.

相關內容

This paper describes the Bayesian SIR modeling of the 3 waves of Covid-19 in two contrasting US states during 2020-2021. A variety of models are evaluated at the county level for goodness-of-fit and an assessment of confounding predictors is also made. It is found that models with three deprivation predictors and neighborhood effects are important. In addition the work index from Google mobility was also found to provide increased explanation of the transmission dynamic.

This paper considers a single-cell massive MIMO (multiple-input multiple-output) system with dual-polarized antennas at both the base station and users. We study a channel model that takes into account several practical aspects that arise when utilizing dual-polarization, such as channel cross-polar discrimination (XPD) and cross-polar correlations (XPC) at the transmitter and receiver. We analyze uplink and downlink achievable spectral efficiencies (SE) with and without successive interference cancellation (SIC) for the linear minimum mean squared error (MMSE), zero-forcing (ZF), and maximum ratio (MR) combining/precoding schemes. In addition, we derive the statistical properties of the MMSE channel estimator for the dual-polarized channel model. These estimates are used to implement different precoding and combining schemes when the uplink and downlink SE expressions are calculated for the case. Closed-form uplink and downlink SE expressions for MR combining/precoding are derived. Based on these results, we also provide power control algorithms to maximize the uplink and downlink sum SEs. Moreover, we compare the SEs achieved in dual-polarized and uni-polarized setups numerically and evaluate the impact of XPD and XPC.

The reconfigurable intelligent surface (RIS) technology is a promising enabler for millimeter wave (mmWave) wireless communications, as it can potentially provide spectral efficiency comparable to the conventional massive multiple-input multiple-output (MIMO) but with significantly lower hardware complexity. In this paper, we focus on the estimation and projection of the uplink RIS-aided massive MIMO channel, which can be time-varying. We propose to let the user equipments (UE) transmit Zadoff-Chu (ZC) sequences and let the base station (BS) conduct maximum likelihood (ML) estimation of the uplink channel. The proposed scheme is computationally efficient: it uses ZC sequences to decouple the estimation of the frequency and time offsets; it uses the space-alternating generalized expectation-maximization (SAGE) method to reduce the high-dimensional problem due to the multipaths to multiple lower-dimensional ones per path. Owing to the estimation of the Doppler frequency offsets, the time-varying channel state can be projected, which can significantly lower the overhead of the pilots for channel estimation. The numerical simulations verify the effectiveness of the proposed scheme.

Forecasting methodologies have always attracted a lot of attention and have become an especially hot topic since the beginning of the COVID-19 pandemic. In this paper we consider the problem of multi-period forecasting that aims to predict several horizons at once. We propose a novel approach that forces the prediction to be "smooth" across horizons and apply it to two tasks: point estimation via regression and interval prediction via quantile regression. This methodology was developed for real-time distributed COVID-19 forecasting. We illustrate the proposed technique with the CovidCast dataset as well as a small simulation example.

This paper develops a new genetic algorithm based resource allocation (GA-RA) technique for energy-efficient throughout maximization in multi-user massive multiple-input multiple-output (MU-mMIMO) systems using orthogonal frequency division multiplexing (OFDM) based transmission. We employ a hybrid precoding (HP) architecture with three stages: (i) radio frequency (RF) beamformer, (ii) baseband (BB) precoder, (iii) resource allocation (RA) block. First, a single RF beamformer block is built for all subcarriers via the slow time-varying angle-of-departure (AoD) information. For enhancing the energy efficiency, the RF beamformer aims to reduce the hardware cost/complexity and total power consumption via a low number of RF chains. Afterwards, the reduced-size effective channel state information (CSI) is utilized in the design of a distinct BB precoder and RA block for each subcarrier. The BB precoder is developed via regularized zero-forcing technique. Finally, the RA block is built via the proposed GA-RA technique for throughput maximization by allocating the power and subcarrier resources. The illustrative results show that the throughput performance in the MU-mMIMO-OFDM systems is greatly enhanced via the proposed GA-RA technique compared to both equal RA (EQ-RA) and particle swarm optimization based RA (PSO-RA). Moreover, the performance gain ratio increases with the increasing number of subcarriers, particularly for low transmission powers.

Multi-perspective cameras are quickly gaining importance in many applications such as smart vehicles and virtual or augmented reality. However, a large system size or absence of overlap in neighbouring fields-of-view often complicate their calibration. We present a novel solution which relies on the availability of an external motion capture system. Our core contribution consists of an extension to the hand-eye calibration problem which jointly solves multi-eye-to-base problems in closed form. We furthermore demonstrate its equivalence to the multi-eye-in-hand problem. The practical validity of our approach is supported by our experiments, indicating that the method is highly efficient and accurate, and outperforms existing closed-form alternatives.

An abundant amount of data gathered during wind tunnel testing and health monitoring of structures inspires the use of machine learning methods to replicate the wind forces. This paper presents a data-driven Gaussian Process-Nonlinear Finite Impulse Response (GP-NFIR) model of the nonlinear self-excited forces acting on structures. Constructed in a nondimensional form, the model takes the effective wind angle of attack as lagged exogenous input and outputs a probability distribution of the forces. The nonlinear input/output function is modeled by a GP regression. Consequently, the model is nonparametric, thereby circumventing to set up the function's structure a priori. The training input is designed as random harmonic motion consisting of vertical and rotational displacements. Once trained, the model can predict the aerodynamic forces for both prescribed input motion and aeroelastic analysis. The concept is first verified for a flat plate's analytical solution by predicting the self-excited forces and flutter velocity. Finally, the framework is applied to a streamlined and bluff bridge deck based on Computational Fluid Dynamics (CFD) data. The model's ability to predict nonlinear aerodynamic forces, flutter velocity, and post-flutter behavior are highlighted. Applications of the framework are foreseen in the structural analysis during the design and monitoring of slender line-like structures.

The accurate estimation of Channel State Information (CSI) is of crucial importance for the successful operation of Multiple-Input Multiple-Output (MIMO) communication systems, especially in a Multi-User (MU) time-varying environment and when employing the emerging technology of Reconfigurable Intelligent Surfaces (RISs). Their predominantly passive nature renders the estimation of the channels involved in the user-RIS-base station link a quite challenging problem. Moreover, the time-varying nature of most of the realistic wireless channels drives up the cost of real-time channel tracking significantly, especially when RISs of massive size are deployed. In this paper, we develop a channel tracking scheme for the uplink of RIS-enabled MU MIMO systems in the presence of channel fading. The starting point is a tensor representation of the received signal and we rely on its PARAllel FACtor (PARAFAC) analysis to both get the initial estimate and track the channel time variation. Simulation results for various system settings are reported, which validate the feasibility and effectiveness of the proposed channel tracking approach.

Over the past several years, new machine learning accelerators were being announced and released every month for a variety of applications from speech recognition, video object detection, assisted driving, and many data center applications. This paper updates the survey of AI accelerators and processors from past two years. This paper collects and summarizes the current commercial accelerators that have been publicly announced with peak performance and power consumption numbers. The performance and power values are plotted on a scatter graph, and a number of dimensions and observations from the trends on this plot are again discussed and analyzed. This year, we also compile a list of benchmarking performance results and compute the computational efficiency with respect to peak performance.

Stock trend forecasting, aiming at predicting the stock future trends, is crucial for investors to seek maximized profits from the stock market. Many event-driven methods utilized the events extracted from news, social media, and discussion board to forecast the stock trend in recent years. However, existing event-driven methods have two main shortcomings: 1) overlooking the influence of event information differentiated by the stock-dependent properties; 2) neglecting the effect of event information from other related stocks. In this paper, we propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods. To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts. To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks. The experimental studies on the real-world data demonstrate the efficiency of our REST framework. The results of investment simulation show that our framework can achieve a higher return of investment than baselines.

北京阿比特科技有限公司