亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Process mining can help acquire insightful knowledge and heighten the system's performance. In this study, we surveyed the trajectories of 1050 sepsis patients in a regional hospital in the Netherlands from the registration to the discharge phase. Based on this real-world case study, the event log comprises events and activities related to the emergency ward, admission to hospital wards, and discharge enriched with data from lab experiments and triage checklists. At first, we aim to discover this process through Heuristics Miner (HM) and Inductive Miner (IM) methods. Then, we analyze a systematic process model based on organizational information and knowledge. Besides, we address conformance checking given medical guidelines for these patients and monitor the related flows on the systematic process model. The results show that HM and IM are inadequate in identifying the relevant process. However, using a systematic process model based on expert knowledge and organizational information resulted in an average fitness of 97.8%, a simplicity of 77.7%, and a generalization of 80.2%. The analyses demonstrate that process mining can shed light on the patient flow in the hospital and inspect the day-to-day clinical performance versus medical guidelines. Also, the process models obtained by the HM and IM methods cannot provide a concrete comprehension of the process structure for stakeholders compared to the systematic process model. The implications of our findings include the potential for process mining to improve the quality of healthcare services, optimize resource allocation, and reduce costs. Our study also highlights the importance of considering expert knowledge and organizational information in developing effective process models.

相關內容

A recent trend in the domain of open-domain conversational agents is enabling them to converse empathetically to emotional prompts. Current approaches either follow an end-to-end approach or condition the responses on similar emotion labels to generate empathetic responses. But empathy is a broad concept that refers to the cognitive and emotional reactions of an individual to the observed experiences of another and it is more complex than mere mimicry of emotion. Hence, it requires identifying complex human conversational strategies and dynamics in addition to generic emotions to control and interpret empathetic responding capabilities of chatbots. In this work, we make use of a taxonomy of eight empathetic response intents in addition to generic emotion categories in building a dialogue response generation model capable of generating empathetic responses in a controllable and interpretable manner. It consists of two modules: 1) a response emotion/intent prediction module; and 2) a response generation module. We propose several rule-based and neural approaches to predict the next response's emotion/intent and generate responses conditioned on these predicted emotions/intents. Automatic and human evaluation results emphasize the importance of the use of the taxonomy of empathetic response intents in producing more diverse and empathetically more appropriate responses than end-to-end models.

Quality-Diversity (QD) algorithms have recently gained traction as optimisation methods due to their effectiveness at escaping local optima and capability of generating wide-ranging and high-performing solutions. Recently, Multi-Objective MAP-Elites (MOME) extended the QD paradigm to the multi-objective setting by maintaining a Pareto front in each cell of a map-elites grid. MOME achieved a global performance that competed with NSGA-II and SPEA2, two well-established Multi-Objective Evolutionary Algorithms (MOEA), while also acquiring a diverse repertoire of solutions. However, MOME is limited by non-directed genetic search mechanisms which struggle in high-dimensional search spaces. In this work, we present Multi-Objective MAP-Elites with Policy-Gradient Assistance and Crowding-based Exploration (MOME-PGX): a new QD algorithm that extends MOME to improve its data efficiency and performance. MOME-PGX uses gradient-based optimisation to efficiently drive solutions towards higher performance. It also introduces crowding-based mechanisms to create an improved exploration strategy and to encourage uniformity across Pareto fronts. We evaluate MOME-PGX in four simulated robot locomotion tasks and demonstrate that it converges faster and to a higher performance than all other baselines. We show that MOME-PGX is between 4.3 and 42 times more data-efficient than MOME and doubles the performance of MOME, NSGA-II and SPEA2 in challenging environments.

This work examines the challenges of training neural networks using vector quantization using straight-through estimation. We find that a primary cause of training instability is the discrepancy between the model embedding and the code-vector distribution. We identify the factors that contribute to this issue, including the codebook gradient sparsity and the asymmetric nature of the commitment loss, which leads to misaligned code-vector assignments. We propose to address this issue via affine re-parameterization of the code vectors. Additionally, we introduce an alternating optimization to reduce the gradient error introduced by the straight-through estimation. Moreover, we propose an improvement to the commitment loss to ensure better alignment between the codebook representation and the model embedding. These optimization methods improve the mathematical approximation of the straight-through estimation and, ultimately, the model performance. We demonstrate the effectiveness of our methods on several common model architectures, such as AlexNet, ResNet, and ViT, across various tasks, including image classification and generative modeling.

Gaussian Process based Bayesian Optimization is a well-known sample efficient sequential strategy for globally optimizing black-box, expensive, and multi-extremal functions. The role of the Gaussian Process is to provide a probabilistic approximation of the unknown function, depending on the sequentially collected observations, while an acquisition function drives the choice of the next solution to evaluate, balancing between exploration and exploitation, depending on the current Gaussian Process model. Despite the huge effort of the scientific community in defining effective exploration-exploitation mechanisms, we are still far away from the master acquisition function. This paper merges the most relevant results and insights from both algorithmic and human search strategies to propose a novel acquisition function, mastering the trade-off between explorative and exploitative choices, adaptively. We compare the proposed acquisition function on a number of test functions and against different state-of-the-art ones, which are instead based on prefixed or random scheduling between exploration and exploitation. A Pareto analysis is performed with respect to two (antagonistic) goals: convergence to the optimum and exploration capability. Results empirically prove that the proposed acquisition function is almost always Pareto optimal and also the most balanced trade-off between the two goals.

The prediction of academic dropout, with the aim of preventing it, is one of the current challenges of higher education institutions. Machine learning techniques are a great ally in this task. However, attention is needed in the way that academic data are used by such methods, so that it reflects the reality of the prediction problem under study and allows achieving good results. In this paper, we study strategies for splitting and using academic data in order to create training and testing sets. Through a conceptual analysis and experiments with data from a public higher education institution, we show that a random proportional data splitting, and even a simple temporal splitting are not suitable for dropout prediction. The study indicates that a temporal splitting combined with a time-based selection of the students' incremental academic histories leads to the best strategy for the problem in question.

Long-term trajectory forecasting is a challenging problem in the field of computer vision and machine learning. In this paper, we propose a new method dubbed Di-Long ("Distillation for Long-Term trajectory") for long-term trajectory forecasting, which is based on knowledge distillation. Our approach involves training a student network to solve the long-term trajectory forecasting problem, whereas the teacher network from which the knowledge is distilled has a longer observation, and solves a short-term trajectory prediction problem by regularizing the student's predictions. Specifically, we use a teacher model to generate plausible trajectories for a shorter time horizon, and then distill the knowledge from the teacher model to a student model that solves the problem for a much higher time horizon. Our experiments show that the proposed Di-Long approach is beneficial for long-term forecasting, and our model achieves state-of-the-art performance on the Intersection Drone Dataset (inD) and the Stanford Drone Dataset (SDD).

In this paper, we consider the Maximum-Profit Routing Problem (MPRP), introduced in \cite{Armaselu-PETRA}. In MPRP, the goal is to route the given fleet of vehicles to pickup goods from specified sites in such a way as to maximize the profit, i.e., total quantity collected minus travelling costs. Although deterministic approximation algorithms are known for the problem, currently there is no randomized algorithm. In this paper, we propose the first randomized algorithm for MPRP.

As social issues related to gender bias attract closer scrutiny, accurate tools to determine the gender profile of large groups become essential. When explicit data is unavailable, gender is often inferred from names. Current methods follow a strategy whereby individuals of the group, one by one, are assigned a gender label or probability based on gender-name correlations observed in the population at large. We show that this strategy is logically inconsistent and has practical shortcomings, the most notable of which is the systematic underestimation of gender bias. We introduce a global inference strategy that estimates gender composition according to the context of the full list of names. The tool suffers from no intrinsic methodological effects, is robust against errors, easily implemented, and computationally light.

Quantum dynamics can be simulated on a quantum computer by exponentiating elementary terms from the Hamiltonian in a sequential manner. However, such an implementation of Trotter steps has gate complexity depending on the total Hamiltonian term number, comparing unfavorably to algorithms using more advanced techniques. We develop methods to perform faster Trotter steps with complexity sublinear in the number of terms. We achieve this for a class of Hamiltonians whose interaction strength decays with distance according to power law. Our methods include one based on a recursive block encoding and one based on an average-cost simulation, overcoming the normalization-factor barrier of these advanced quantum simulation techniques. We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank. Combining with a tighter error analysis, we show that it suffices to use $\left(\eta^{1/3}n^{1/3}+\frac{n^{2/3}}{\eta^{2/3}}\right)n^{1+o(1)}$ gates to simulate uniform electron gas with $n$ spin orbitals and $\eta$ electrons in second quantization in real space, asymptotically improving over the best previous work. We obtain an analogous result when the external potential of nuclei is introduced under the Born-Oppenheimer approximation. We prove a circuit lower bound when the Hamiltonian coefficients take a continuum range of values, showing that generic $n$-qubit $2$-local Hamiltonians with commuting terms require at least $\Omega(n^2)$ gates to evolve with accuracy $\epsilon=\Omega(1/poly(n))$ for time $t=\Omega(\epsilon)$. Our proof is based on a gate-efficient reduction from the approximate synthesis of diagonal unitaries within the Hamming weight-$2$ subspace, which may be of independent interest. Our result thus suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter steps with lower gate complexity.

What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.

北京阿比特科技有限公司