亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Strahler number was originally proposed to characterize the complexity of river bifurcation and has found various applications. This article proposes computation of the Strahler number's upper and lower limits for natural language sentence tree structures. Through empirical measurements across grammatically annotated data, the Strahler number of natural language sentences is shown to be almost 3 or 4, similarly to the case of river bifurcation as reported by Strahler (1957). From the theory behind the number, we show that it is one kind of lower limit on the amount of memory required to process sentences. We consider the Strahler number to provide reasoning that explains reports showing that the number of required memory areas to process sentences is 3 to 4 for parsing (Abney and Johnson, 1991; Schuler et al., 2010), and reports indicating a psychological "magical number" of 3 to 5 (Cowan, 2001). An analytical and empirical analysis shows that the Strahler number is not constant but grows logarithmically; therefore, the Strahler number of sentences derives from the range of sentence lengths. Furthermore, the Strahler number is not different for random trees, which could suggest that its origin is not specific to natural language.

相關內容

Deep neural networks are over-parameterized and easily overfit the datasets they train on. In the extreme case, it has been shown that these networks can memorize a training set with fully randomized labels. We propose using the curvature of loss function around each training sample, averaged over training epochs, as a measure of memorization of the sample. We use this metric to study the generalization versus memorization properties of different samples in popular image datasets and show that it captures memorization statistics well, both qualitatively and quantitatively. We first show that the high curvature samples visually correspond to long-tailed, mislabeled, or conflicting samples, those that are most likely to be memorized. This analysis helps us find, to the best of our knowledge, a novel failure mode on the CIFAR100 and ImageNet datasets: that of duplicated images with differing labels. Quantitatively, we corroborate the validity of our scores via two methods. First, we validate our scores against an independent and comprehensively calculated baseline, by showing high cosine similarity with the memorization scores released by Feldman and Zhang (2020). Second, we inject corrupted samples which are memorized by the network, and show that these are learned with high curvature. To this end, we synthetically mislabel a random subset of the dataset. We overfit a network to it and show that sorting by curvature yields high AUROC values for identifying the corrupted samples. An added advantage of our method is that it is scalable, as it requires training only a single network as opposed to the thousands trained by the baseline, while capturing the aforementioned failure mode that the baseline fails to identify.

Generalization properties are a central aspect of the design and analysis of learning algorithms. One notion that has been considered in many previous works as leading to good generalization is flat minima, which informally describes a loss surface that is insensitive to noise perturbations. However, the design of efficient algorithms (that are easy to analyze) to find them is relatively under-explored. In this paper, we propose a new algorithm to address this issue, which minimizes a stochastic optimization objective that averages noise perturbations injected into the weights of a function. This algorithm is shown to enjoy both theoretical and empirical advantages compared to existing algorithms involving worst-case perturbations. Theoretically, we show tight convergence rates of our algorithm to find first-order stationary points of the stochastic objective. Empirically, the algorithm induces a penalty on the trace of the Hessian, leading to iterates that are flatter than SGD and other alternatives, with tighter generalization gaps. Altogether, this work contributes a provable and practical algorithm to find flat minima by optimizing the noise stability properties of a function.

Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios. While distributed DNNs have been studied, to the best of our knowledge the resilience of distributed DNNs to adversarial action still remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and introduce two new measurements for distortion and robustness. Our theoretical findings indicate that (i) assuming the same level of information distortion, latent features are always more robust than input representations; (ii) the adversarial robustness is jointly determined by the feature dimension and the generalization capability of the DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks to the ImageNet-1K dataset. Our experimental results support our theoretical findings by showing that the compressed latent representations can reduce the success rate of adversarial attacks by 88% in the best case and by 57% on the average compared to attacks to the input space.

It is shown in this note that approximating the number of independent sets in a $k$-uniform linear hypergraph with maximum degree at most $\Delta$ is NP-hard if $\Delta\geq 5\cdot 2^{k-1}+1$. This confirms that for the relevant sampling and approximate counting problems, the regimes on the maximum degree where the state-of-the-art algorithms work are tight, up to some small factors. These algorithms include: the approximate sampler and randomised approximation scheme by Hermon, Sly and Zhang (RSA, 2019), the perfect sampler by Qiu, Wang and Zhang (ICALP, 2022), and the deterministic approximation scheme by Feng, Guo, Wang, Wang and Yin (FOCS, 2023).

Vanilla Reinforcement Learning (RL) can efficiently solve complex tasks but does not provide any guarantees on system behavior. To bridge this gap, we propose a three-step safe RL procedure for continuous action spaces that provides probabilistic guarantees with respect to temporal logic specifications. First, our approach probabilistically verifies a candidate controller with respect to a temporal logic specification while randomizing the control inputs to the system within a bounded set. Second, we improve the performance of this probabilistically verified controller by adding an RL agent that optimizes the verified controller for performance in the same bounded set around the control input. Third, we verify probabilistic safety guarantees with respect to temporal logic specifications for the learned agent. Our approach is efficiently implementable for continuous action and state spaces. The separation of safety verification and performance improvement into two distinct steps realizes both explicit probabilistic safety guarantees and a straightforward RL setup that focuses on performance. We evaluate our approach on an evasion task where a robot has to reach a goal while evading a dynamic obstacle with a specific maneuver. Our results show that our safe RL approach leads to efficient learning while maintaining its probabilistic safety specification.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司