亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $\mathrm{SLAut}(\mathbb{F}_{q}^{n})$ denote the group of all semilinear isometries on $\mathbb{F}_{q}^{n}$, where $q=p^{e}$ is a prime power. In this paper, we investigate general properties of linear codes associated with $\sigma$ duals for $\sigma\in\mathrm{SLAut}(\mathbb{F}_{q}^{n})$. We show that the dimension of the intersection of two linear codes can be determined by generator matrices of such codes and their $\sigma$ duals. We also show that the dimension of $\sigma$ hull of a linear code can be determined by a generator matrix of it or its $\sigma$ dual. We give a characterization on $\sigma$ dual and $\sigma$ hull of a matrix-product code. We also investigate the intersection of a pair of matrix-product codes. We provide a necessary and sufficient condition under which any codeword of a generalized Reed-Solomon (GRS) code or an extended GRS code is contained in its $\sigma$ dual. As an application, we construct eleven families of $q$-ary MDS codes with new $\ell$-Galois hulls satisfying $2(e-\ell)\mid e$, which are not covered by the latest papers by Cao (IEEE Trans. Inf. Theory 67(12), 7964-7984, 2021) and by Fang et al. (Cryptogr. Commun. 14(1), 145-159, 2022) when $\ell\neq \frac{e}{2}$.

相關內容

Few-weight codes over finite chain rings are associated with combinatorial objects such as strongly regular graphs (SRGs), strongly walk-regular graphs (SWRGs) and finite geometries, and are also widely used in data storage systems and secret sharing schemes. The first objective of this paper is to characterize all possible parameters of Plotkin-optimal two-homogeneous weight regular projective codes over finite chain rings, as well as their weight distributions. We show the existence of codes with these parameters by constructing an infinite family of two-homogeneous weight codes. The parameters of their Gray images have the same weight distribution as that of the two-weight codes of type SU1 in the sense of Calderbank and Kantor (Bull Lond Math Soc 18: 97-122, 1986). Further, we also construct three-homogeneous weight regular projective codes over finite chain rings combined with some known results. Finally, we study applications of our constructed codes in secret sharing schemes and graph theory. In particular, infinite families of SRGs and SWRGs with non-trivial parameters are obtained.

Mixed-integer linear programming (MILP) is at the core of many advanced algorithms for solving fundamental problems in combinatorial optimization. The complexity of solving MILPs directly correlates with their support size, which is the minimum number of non-zero integer variables in an optimal solution. A hallmark result by Eisenbrand and Shmonin (Oper. Res. Lett., 2006) shows that any feasible integer linear program (ILP) has a solution with support size $s\leq 2m\cdot\log(4m\Delta)$, where $m$ is the number of constraints, and $\Delta$ is the largest coefficient in any constraint. Our main combinatorial result are improved support size bounds for ILPs. To improve granularity, we analyze for the largest $1$-norm $A_{\max}$ of any column of the constraint matrix, instead of $\Delta$. We show a support size upper bound of $s\leq m\cdot(\log(3A_{\max})+\sqrt{\log(A_{\max})})$, by deriving a new bound on the -1 branch of the Lambert $\mathcal{W}$ function. Additionally, we provide a lower bound of $m\log(A_{\max})$, proving our result asymptotically optimal. Furthermore, we give support bounds of the form $s\leq 2m\cdot\log(1.46A_{\max})$. These improve upon the previously best constants by Aliev. et. al. (SIAM J. Optim., 2018), because all our upper bounds hold equally with $A_{\max}$ replaced by $\sqrt{m}\Delta$. Using our combinatorial result, we obtain the fastest known approximation schemes (EPTAS) for the fundamental scheduling problem of makespan minimization of uniformly related machines ($Q\mid\mid C_{\max}$).

Convolutional codes with a maximum distance profile attain the largest possible column distances for the maximum number of time instants and thus have outstanding error-correcting capability especially for streaming applications. Explicit constructions of such codes are scarce in the literature. In particular, known constructions of convolutional codes with rate k/n and a maximum distance profile require a field of size at least exponential in n for general code parameters. At the same time, the only known lower bound on the field size is the trivial bound that is linear in n. In this paper, we show that a finite field of size $\Omega_L(n^{L-1})$ is necessary for constructing convolutional codes with rate k/n and a maximum distance profile of length L. As a direct consequence, this rules out the possibility of constructing convolutional codes with a maximum distance profile of length L >= 3 over a finite field of size O(n). Additionally, we also present an explicit construction of convolutional code with rate k/n and a maximum profile of length L = 1 over a finite field of size $O(n^{\min\{k,n-k\}})$, achieving a smaller field size than known constructions with the same profile length.

We analyze a method for embedding graphs as vectors in a structure-preserving manner, showcasing its rich representational capacity and establishing some of its theoretical properties. Our procedure falls under the bind-and-sum approach, and we show that the tensor product is the most general binding operation that respects the superposition principle. We also establish some precise results characterizing the behavior of our method, and we show that our use of spherical codes achieves a packing upper bound. We establish a link to adjacency matrices, showing that our method is, in some sense, a compression of adjacency matrices with applications towards sparse graph representations.

The {\em binary deletion channel} with deletion probability $d$ ($\text{BDC}_d$) is a random channel that deletes each bit of the input message i.i.d with probability $d$. It has been studied extensively as a canonical example of a channel with synchronization errors. Perhaps the most important question regarding the BDC is determining its capacity. Mitzenmacher and Drinea (ITIT 2006) and Kirsch and Drinea (ITIT 2009) show a method by which distributions on run lengths can be converted to codes for the BDC, yielding a lower bound of $\mathcal{C}(\text{BDC}_d) > 0.1185 \cdot (1-d)$. Fertonani and Duman (ITIT 2010), Dalai (ISIT 2011) and Rahmati and Duman (ITIT 2014) use computer aided analyses based on the Blahut-Arimoto algorithm to prove an upper bound of $\mathcal{C}(\text{BDC}_d) < 0.4143\cdot(1-d)$ in the high deletion probability regime ($d > 0.65$). In this paper, we show that the Blahut-Arimoto algorithm can be implemented with a lower space complexity, allowing us to extend the upper bound analyses, and prove an upper bound of $\mathcal{C}(\text{BDC}_d) < 0.3745 \cdot(1-d)$ for all $d \geq 0.68$. Furthermore, we show that an extension of the Blahut-Arimoto algorithm can also be used to select better run length distributions for Mitzenmacher and Drinea's construction, yielding a lower bound of $\mathcal{C}(\text{BDC}_d) > 0.1221 \cdot (1 - d)$.

The hull of a linear code (i.e., a finite field vector space)~\({\mathcal C}\) is defined to be the vector space formed by the intersection of~\({\mathcal C}\) with its dual~\({\mathcal C}^{\perp}.\) Constructing vector spaces with a specified hull dimension has important applications and it is therefore of interest to study minimum distance properties of such spaces. In this paper, we use the probabilistic method to obtain spaces with a given hull dimension and minimum distance and also derive Gilbert-Varshamov type sufficient conditions for their existence.

An integer vector $b \in \mathbb{Z}^d$ is a degree sequence if there exists a hypergraph with vertices $\{1,\dots,d\}$ such that each $b_i$ is the number of hyperedges containing $i$. The degree-sequence polytope $\mathscr{Z}^d$ is the convex hull of all degree sequences. We show that all but a $2^{-\Omega(d)}$ fraction of integer vectors in the degree sequence polytope are degree sequences. Furthermore, the corresponding hypergraph of these points can be computed in time $2^{O(d)}$ via linear programming techniques. This is substantially faster than the $2^{O(d^2)}$ running time of the current-best algorithm for the degree-sequence problem. We also show that for $d\geq 98$, the degree-sequence polytope $\mathscr{Z}^d$ contains integer points that are not degree sequences. Furthermore, we prove that the linear optimization problem over $\mathscr{Z}^d$ is $\mathrm{NP}$-hard. This complements a recent result of Deza et al. (2018) who provide an algorithm that is polynomial in $d$ and the number of hyperedges.

We investigate the approximation of high-dimensional target measures as low-dimensional updates of a dominating reference measure. This approximation class replaces the associated density with the composition of: (i) a feature map that identifies the leading principal components or features of the target measure, relative to the reference, and (ii) a low-dimensional profile function. When the reference measure satisfies a subspace $\phi$-Sobolev inequality, we construct a computationally tractable approximation that yields certifiable error guarantees with respect to the Amari $\alpha$-divergences. Our construction proceeds in two stages. First, for any feature map and any $\alpha$-divergence, we obtain an analytical expression for the optimal profile function. Second, for linear feature maps, the principal features are obtained from eigenvectors of a matrix involving gradients of the log-density. Neither step requires explicit access to normalizing constants. Notably, by leveraging the $\phi$-Sobolev inequalities, we demonstrate that these features universally certify approximation errors across the range of $\alpha$-divergences $\alpha \in (0,1]$. We then propose an application to Bayesian inverse problems and provide an analogous construction with approximation guarantees that hold in expectation over the data. We conclude with an extension of the proposed dimension reduction strategy to nonlinear feature maps.

In this paper, we present a novel stochastic normal map-based algorithm ($\mathsf{norM}\text{-}\mathsf{SGD}$) for nonconvex composite-type optimization problems and discuss its convergence properties. Using a time window-based strategy, we first analyze the global convergence behavior of $\mathsf{norM}\text{-}\mathsf{SGD}$ and it is shown that every accumulation point of the generated sequence of iterates $\{\boldsymbol{x}^k\}_k$ corresponds to a stationary point almost surely and in an expectation sense. The obtained results hold under standard assumptions and extend the more limited convergence guarantees of the basic proximal stochastic gradient method. In addition, based on the well-known Kurdyka-{\L}ojasiewicz (KL) analysis framework, we provide novel point-wise convergence results for the iterates $\{\boldsymbol{x}^k\}_k$ and derive convergence rates that depend on the underlying KL exponent $\boldsymbol{\theta}$ and the step size dynamics $\{\alpha_k\}_k$. Specifically, for the popular step size scheme $\alpha_k=\mathcal{O}(1/k^\gamma)$, $\gamma \in (\frac23,1]$, (almost sure) rates of the form $\|\boldsymbol{x}^k-\boldsymbol{x}^*\| = \mathcal{O}(1/k^p)$, $p \in (0,\frac12)$, can be established. The obtained rates are faster than related and existing convergence rates for $\mathsf{SGD}$ and improve on the non-asymptotic complexity bounds for $\mathsf{norM}\text{-}\mathsf{SGD}$.

We consider $t$-Lee-error-correcting codes of length $n$ over the residue ring $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$ and determine upper and lower bounds on the number of $t$-Lee-error-correcting codes. We use two different methods, namely estimating isolated nodes on bipartite graphs and the graph container method. The former gives density results for codes of fixed size and the latter for any size. This confirms some recent density results for linear Lee metric codes and provides new density results for nonlinear codes. To apply a variant of the graph container algorithm we also investigate some geometrical properties of the balls in the Lee metric.

北京阿比特科技有限公司