亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Systematically including dynamically changing waypoints as desired discrete actions, for instance, resulting from superordinate task planning, has been challenging for online model predictive trajectory optimization with short planning horizons. This paper presents a novel waypoint model predictive control (wMPC) concept for online replanning tasks. The main idea is to split the planning horizon at the waypoint when it becomes reachable within the current planning horizon and reduce the horizon length towards the waypoints and goal points. This approach keeps the computational load low and provides flexibility in adapting to changing conditions in real time. The presented approach achieves competitive path lengths and trajectory durations compared to (global) offline RRT-type planners in a multi-waypoint scenario. Moreover, the ability of wMPC to dynamically replan tasks online is experimentally demonstrated on a KUKA LBR iiwa 14 R820 robot in a dynamic pick-and-place scenario.

相關內容

Court transcripts and judgments are rich repositories of legal knowledge, detailing the intricacies of cases and the rationale behind judicial decisions. The extraction of key information from these documents provides a concise overview of a case, crucial for both legal experts and the public. With the advent of large language models (LLMs), automatic information extraction has become increasingly feasible and efficient. This paper presents a comprehensive study on the application of GPT-4, a large language model, for automatic information extraction from UK Employment Tribunal (UKET) cases. We meticulously evaluated GPT-4's performance in extracting critical information with a manual verification process to ensure the accuracy and relevance of the extracted data. Our research is structured around two primary extraction tasks: the first involves a general extraction of eight key aspects that hold significance for both legal specialists and the general public, including the facts of the case, the claims made, references to legal statutes, references to precedents, general case outcomes and corresponding labels, detailed order and remedies and reasons for the decision. The second task is more focused, aimed at analysing three of those extracted features, namely facts, claims and outcomes, in order to facilitate the development of a tool capable of predicting the outcome of employment law disputes. Through our analysis, we demonstrate that LLMs like GPT-4 can obtain high accuracy in legal information extraction, highlighting the potential of LLMs in revolutionising the way legal information is processed and utilised, offering significant implications for legal research and practice.

With the increasing amount of data available to scientists in disciplines as diverse as bioinformatics, physics, and remote sensing, scientific workflow systems are becoming increasingly important for composing and executing scalable data analysis pipelines. When writing such workflows, users need to specify the resources to be reserved for tasks so that sufficient resources are allocated on the target cluster infrastructure. Crucially, underestimating a task's memory requirements can result in task failures. Therefore, users often resort to overprovisioning, resulting in significant resource wastage and decreased throughput. In this paper, we propose a novel online method that uses monitoring time series data to predict task memory usage in order to reduce the memory wastage of scientific workflow tasks. Our method predicts a task's runtime, divides it into k equally-sized segments, and learns the peak memory value for each segment depending on the total file input size. We evaluate the prototype implementation of our method using workflows from the publicly available nf-core repository, showing an average memory wastage reduction of 29.48% compared to the best state-of-the-art approach.

Graph Neural Networks (GNNs) have gained considerable attention for their potential in addressing challenges posed by complex graph-structured data in diverse domains. However, accurately annotating graph data for training is difficult due to the inherent complexity and interconnectedness of graphs. To tackle this issue, we propose a novel graph representation learning method that enables GNN models to effectively learn discriminative information even in the presence of noisy labels within the context of Partially Labeled Learning (PLL). PLL is a critical weakly supervised learning problem, where each training instance is associated with a set of candidate labels, including both the true label and additional noisy labels. Our approach leverages potential cause extraction to obtain graph data that exhibit a higher likelihood of possessing a causal relationship with the labels. By incorporating auxiliary training based on the extracted graph data, our model can effectively filter out the noise contained in the labels. We support the rationale behind our approach with a series of theoretical analyses. Moreover, we conduct extensive evaluations and ablation studies on multiple datasets, demonstrating the superiority of our proposed method.

Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called \textbf{MT-CSD}), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (\textbf{GLAN}) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47\%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at \url{//github.com/nfq729/MT-CSD}.

Supersaturated designs investigate more factors than there are runs, and are often constructed under a criterion measuring a design's proximity to an unattainable orthogonal design. The most popular analysis identifies active factors by inspecting the solution path of a penalized estimator, such as the lasso. Recent criteria encouraging positive correlations between factors have been shown to produce designs with more definitive solution paths so long as the active factors have positive effects. Two open problems affecting the understanding and practicality of supersaturated designs are: (1) do optimal designs under existing criteria maximize support recovery probability across an estimator's solution path, and (2) why do designs with positively correlated columns produce more definitive solution paths when the active factors have positive sign effects? To answer these questions, we develop criteria maximizing the lasso's sign recovery probability. We prove that an orthogonal design is an ideal structure when the signs of the active factors are unknown, and a design constant small, positive correlations is ideal when the signs are assumed known. A computationally-efficient design search algorithm is proposed that first filters through optimal designs under new heuristic criteria to select the one that maximizes the lasso sign recovery probability.

Multi-agent perception (MAP) allows autonomous systems to understand complex environments by interpreting data from multiple sources. This paper investigates intermediate collaboration for MAP with a specific focus on exploring "good" properties of collaborative view (i.e., post-collaboration feature) and its underlying relationship to individual views (i.e., pre-collaboration features), which were treated as an opaque procedure by most existing works. We propose a novel framework named CMiMC (Contrastive Mutual Information Maximization for Collaborative Perception) for intermediate collaboration. The core philosophy of CMiMC is to preserve discriminative information of individual views in the collaborative view by maximizing mutual information between pre- and post-collaboration features while enhancing the efficacy of collaborative views by minimizing the loss function of downstream tasks. In particular, we define multi-view mutual information (MVMI) for intermediate collaboration that evaluates correlations between collaborative views and individual views on both global and local scales. We establish CMiMNet based on multi-view contrastive learning to realize estimation and maximization of MVMI, which assists the training of a collaboration encoder for voxel-level feature fusion. We evaluate CMiMC on V2X-Sim 1.0, and it improves the SOTA average precision by 3.08% and 4.44% at 0.5 and 0.7 IoU (Intersection-over-Union) thresholds, respectively. In addition, CMiMC can reduce communication volume to 1/32 while achieving performance comparable to SOTA. Code and Appendix are released at //github.com/77SWF/CMiMC.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司