亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning models can be improved by adapting them to respect existing background knowledge. In this paper we consider multitask Gaussian processes, with background knowledge in the form of constraints that require a specific sum of the outputs to be constant. This is achieved by conditioning the prior distribution on the constraint fulfillment. The approach allows for both linear and nonlinear constraints. We demonstrate that the constraints are fulfilled with high precision and that the construction can improve the overall prediction accuracy as compared to the standard Gaussian process.

相關內容

Common tasks encountered in epidemiology, including disease incidence estimation and causal inference, rely on predictive modeling. Constructing a predictive model can be thought of as learning a prediction function, i.e., a function that takes as input covariate data and outputs a predicted value. Many strategies for learning these functions from data are available, from parametric regressions to machine learning algorithms. It can be challenging to choose an approach, as it is impossible to know in advance which one is the most suitable for a particular dataset and prediction task at hand. The super learner (SL) is an algorithm that alleviates concerns over selecting the one "right" strategy while providing the freedom to consider many of them, such as those recommended by collaborators, used in related research, or specified by subject-matter experts. It is an entirely pre-specified and data-adaptive strategy for predictive modeling. To ensure the SL is well-specified for learning the prediction function, the analyst does need to make a few important choices. In this Education Corner article, we provide step-by-step guidelines for making these choices, walking the reader through each of them and providing intuition along the way. In doing so, we aim to empower the analyst to tailor the SL specification to their prediction task, thereby ensuring their SL performs as well as possible. A flowchart provides a concise, easy-to-follow summary of key suggestions and heuristics, based on our accumulated experience, and guided by theory.

Natural language understanding tasks such as open-domain question answering often require retrieving and assimilating factual information from multiple sources. We propose to address this problem by integrating a semi-parametric representation of a large text corpus into a Transformer model as a source of factual knowledge. Specifically, our method represents knowledge with `mention memory', a table of dense vector representations of every entity mention in a corpus. The proposed model - TOME - is a Transformer that accesses the information through internal memory layers in which each entity mention in the input passage attends to the mention memory. This approach enables synthesis of and reasoning over many disparate sources of information within a single Transformer model. In experiments using a memory of 150 million Wikipedia mentions, TOME achieves strong performance on several open-domain knowledge-intensive tasks, including the claim verification benchmarks HoVer and FEVER and several entity-based QA benchmarks. We also show that the model learns to attend to informative mentions without any direct supervision. Finally we demonstrate that the model can generalize to new unseen entities by updating the memory without retraining.

The success of large-scale models in recent years has increased the importance of statistical models with numerous parameters. Several studies have analyzed over-parameterized linear models with high-dimensional data that may not be sparse; however, existing results depend on the independent setting of samples. In this study, we analyze a linear regression model with dependent time series data under over-parameterization settings. We consider an estimator via interpolation and developed a theory for excess risk of the estimator under multiple dependence types. This theory can treat infinite-dimensional data without sparsity and handle long-memory processes in a unified manner. Moreover, we bound the risk in our theory via the integrated covariance and nondegeneracy of autocorrelation matrices. The results show that the convergence rate of risks with short-memory processes is identical to that of cases with independent data, while long-memory processes slow the convergence rate. We also present several examples of specific dependent processes that can be applied to our setting.

Annotating data for supervised learning can be costly. When the annotation budget is limited, active learning can be used to select and annotate those observations that are likely to give the most gain in model performance. We propose an active learning algorithm that, in addition to selecting which observation to annotate, selects the precision of the annotation that is acquired. Assuming that annotations with low precision are cheaper to obtain, this allows the model to explore a larger part of the input space, with the same annotation costs. We build our acquisition function on the previously proposed BALD objective for Gaussian Processes, and empirically demonstrate the gains of being able to adjust the annotation precision in the active learning loop.

We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.

We consider M-estimation problems, where the target value is determined using a minimizer of an expected functional of a Levy process. With discrete observations from the Levy process, we can produce a "quasi-path" by shuffling increments of the Levy process, we call it a quasi-process. Under a suitable sampling scheme, a quasi-process can converge weakly to the true process according to the properties of the stationary and independent increments. Using this resampling technique, we can estimate objective functionals similar to those estimated using the Monte Carlo simulations, and it is available as a contrast function. The M-estimator based on these quasi-processes can be consistent and asymptotically normal.

In this work, we focus on the high-dimensional trace regression model with a low-rank coefficient matrix. We establish a nearly optimal in-sample prediction risk bound for the rank-constrained least-squares estimator under no assumptions on the design matrix. Lying at the heart of the proof is a covering number bound for the family of projection operators corresponding to the subspaces spanned by the design. By leveraging this complexity result, we perform a power analysis for a permutation test on the existence of a low-rank signal under the high-dimensional trace regression model. We show that the permutation test based on the rank-constrained least-squares estimator achieves non-trivial power with no assumptions on the minimum (restricted) eigenvalue of the covariance matrix of the design. Finally, we use alternating minimization to approximately solve the rank-constrained least-squares problem to evaluate its empirical in-sample prediction risk and power of the resulting permutation test in our numerical study.

A High-dimensional and sparse (HiDS) matrix is frequently encountered in a big data-related application like an e-commerce system or a social network services system. To perform highly accurate representation learning on it is of great significance owing to the great desire of extracting latent knowledge and patterns from it. Latent factor analysis (LFA), which represents an HiDS matrix by learning the low-rank embeddings based on its observed entries only, is one of the most effective and efficient approaches to this issue. However, most existing LFA-based models perform such embeddings on a HiDS matrix directly without exploiting its hidden graph structures, thereby resulting in accuracy loss. To address this issue, this paper proposes a graph-incorporated latent factor analysis (GLFA) model. It adopts two-fold ideas: 1) a graph is constructed for identifying the hidden high-order interaction (HOI) among nodes described by an HiDS matrix, and 2) a recurrent LFA structure is carefully designed with the incorporation of HOI, thereby improving the representa-tion learning ability of a resultant model. Experimental results on three real-world datasets demonstrate that GLFA outperforms six state-of-the-art models in predicting the missing data of an HiDS matrix, which evidently supports its strong representation learning ability to HiDS data.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司