In the present work, we consider multi-scale computation and convergence for nonlinear time-dependent thermo-mechanical equations of inhomogeneous shells possessing temperature-dependent material properties and orthogonal periodic configurations. The first contribution is that a novel higher-order macro-micro coupled computational model is rigorously devised via multi-scale asymptotic technique and Taylor series approach for high-accuracy simulation of heterogeneous shells. Benefitting from the higher-order corrected terms, the higher-order multi-scale computational model keeps the conservation of local energy and momentum for nonlinear thermo-mechanical simulation. Moreover, a global error estimation with explicit rate of higher-order multi-scale solutions is first derived in the energy norm sense. Furthermore, an efficient space-time numerical algorithm with off-line and on-line stages is presented in detail. Adequate numerical experiments are conducted to confirm the competitive advantages of the presented multi-scale approach, exhibiting not only the exceptional numerical accuracy, but also the less computational expense for heterogeneous shells.
We consider rather general structural equation models (SEMs) between a target and its covariates in several shifted environments. Given $k\in\N$ shifts we consider the set of shifts that are at most $\gamma$-times as strong as a given weighted linear combination of these $k$ shifts and the worst (quadratic) risk over this entire space. This worst risk has a nice decomposition which we refer to as the "worst risk decomposition". Then we find an explicit arg-min solution that minimizes the worst risk and consider its corresponding plug-in estimator which is the main object of this paper. This plug-in estimator is (almost surely) consistent and we first prove a concentration in measure result for it. The solution to the worst risk minimizer is rather reminiscent of the corresponding ordinary least squares solution in that it is product of a vector and an inverse of a Grammian matrix. Due to this, the central moments of the plug-in estimator is not well-defined in general, but we instead consider these moments conditioned on the Grammian inverse being bounded by some given constant. We also study conditional variance of the estimator with respect to a natural filtration for the incoming data. Similarly we consider the conditional covariance matrix with respect to this filtration and prove a bound for the determinant of this matrix. This SEM model generalizes the linear models that have been studied previously for instance in the setting of casual inference or anchor regression but the concentration in measure result and the moment bounds are new even in the linear setting.
This work is concerned with the uniform accuracy of implicit-explicit backward differentiation formulas for general linear hyperbolic relaxation systems satisfying the structural stability condition proposed previously by the third author. We prove the uniform stability and accuracy of a class of IMEX-BDF schemes discretized spatially by a Fourier spectral method. The result reveals that the accuracy of the fully discretized schemes is independent of the relaxation time in all regimes. It is verified by numerical experiments on several applications to traffic flows, rarefied gas dynamics and kinetic theory.
We present a coordination method for multiple mobile manipulators to sort objects in clutter. We consider the object rearrangement problem in which the objects must be sorted into different groups in a particular order. In clutter, the order constraints could not be easily satisfied since some objects occlude other objects so the occluded ones are not directly accessible to the robots. Those objects occluding others need to be moved more than once to make the occluded objects accessible. Such rearrangement problems fall into the class of nonmonotone rearrangement problems which are computationally intractable. While the nonmonotone problems with order constraints are harder, involving with multiple robots requires another computation for task allocation. The proposed method first finds a sequence of objects to be sorted using a search such that the order constraint in each group is satisfied. The search can solve nonmonotone instances that require temporal relocation of some objects to access the next object to be sorted. Once a complete sorting sequence is found, the objects in the sequence are assigned to multiple mobile manipulators using a greedy allocation method. We develop four versions of the method with different search strategies. In the experiments, we show that our method can find a sorting sequence quickly (e.g., 4.6 sec with 20 objects sorted into five groups) even though the solved instances include hard nonmonotone ones. The extensive tests and the experiments in simulation show the ability of the method to solve the real-world sorting problem using multiple mobile manipulators.
In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method. In particular, we consider the framework of multi-level Monte Carlo for parametric expectations and propose modifications of the MLMC estimator, error estimation procedure, and adaptive MLMC parameter selection to ensure the estimation of the CVaR and sensitivities for a given design with a prescribed accuracy. We then propose combining the MLMC framework with an alternating inexact minimisation-gradient descent algorithm, for which we prove exponential convergence in the optimisation iterations under the assumptions of strong convexity and Lipschitz continuity of the gradient of the objective function. We demonstrate the performance of our approach on two numerical examples of practical relevance, which evidence the same optimal asymptotic cost-tolerance behaviour as standard MLMC methods for fixed design computations of output expectations.
In this paper, we propose a multiphysics finite element method for a quasi-static thermo-poroelasticity model with a nonlinear convective transport term. To design some stable numerical methods and reveal the multi-physical processes of deformation, diffusion and heat, we introduce three new variables to reformulate the original model into a fluid coupled problem. Then, we introduce an Newton's iterative algorithm by replacing the convective transport term with $\nabla T^{i}\cdot(\bm{K}\nabla p^{i-1})$, $\nabla T^{i-1}\cdot(\bm{K}\nabla p^{i})$ and $\nabla T^{i-1}\cdot(\bm{K}\nabla p^{i-1})$, and apply the Banach fixed point theorem to prove the convergence of the proposed method. Then, we propose a multiphysics finite element method with Newton's iterative algorithm, which is equivalent to a stabilized method, can effectively overcome the numerical oscillation caused by the nonlinear thermal convection term. Also, we prove that the fully discrete multiphysics finite element method has an optimal convergence order. Finally, we draw conclusions to summarize the main results of this paper.
Controlling spurious oscillations is crucial for designing reliable numerical schemes for hyperbolic conservation laws. This paper proposes a novel, robust, and efficient oscillation-eliminating discontinuous Galerkin (OEDG) method on general meshes, motivated by the damping technique in [Lu, Liu, and Shu, SIAM J. Numer. Anal., 59:1299-1324, 2021]. The OEDG method incorporates an OE procedure after each Runge-Kutta stage, devised by alternately evolving conventional semidiscrete DG scheme and a damping equation. A novel damping operator is carefully designed to possess scale-invariant and evolution-invariant properties. We rigorously prove optimal error estimates of the fully discrete OEDG method for linear scalar conservation laws. This might be the first generic fully-discrete error estimates for nonlinear DG schemes with automatic oscillation control mechanism. The OEDG method exhibits many notable advantages. It effectively eliminates spurious oscillations for challenging problems across various scales and wave speeds, without problem-specific parameters. It obviates the need for characteristic decomposition in hyperbolic systems. It retains key properties of conventional DG method, such as conservation, optimal convergence rates, and superconvergence. Moreover, it remains stable under normal CFL condition. The OE procedure is non-intrusive, facilitating integration into existing DG codes as an independent module. Its implementation is easy and efficient, involving only simple multiplications of modal coefficients by scalars. The OEDG approach provides new insights into the damping mechanism for oscillation control. It reveals the role of damping operator as a modal filter and establishes close relations between the damping and spectral viscosity techniques. Extensive numerical results confirm the theoretical analysis and validate the effectiveness and advantages of the OEDG method.
We present a machine learning framework capable of consistently inferring mathematical expressions of the hyperelastic energy functionals for incompressible materials from sparse experimental data and physical laws. To achieve this goal, we propose a polyconvex neural additive model (PNAM) that enables us to express the hyperelasticity model in a learnable feature space while enforcing polyconvexity. An upshot of this feature space obtained via PNAM is that (1) it is spanned by a set univariate basis that can be re-parametrized with a more complex mathematical form, and (2) the resultant elasticity model is guaranteed to fulfill the polyconvexity, which ensures that the acoustic tensor remains elliptic for any deformation. To further improve the interpretability, we use genetic programming to convert each univariate basis into a compact mathematical expression. The resultant multi-variable mathematical models obtained from this proposed framework are not only more interpretable but are also proven to fulfill physical laws. By controlling the compactness of the learned symbolic form, the machine learning-generated mathematical model also requires fewer arithmetic operations than the deep neural network counterparts during deployment. This latter attribute is crucial for scaling large-scale simulations where the constitutive responses of every integration point must be updated within each incremental time step. We compare our proposed model discovery framework against other state-of-the-art alternatives to assess the robustness and efficiency of the training algorithms and examine the trade-off between interpretability, accuracy, and precision of the learned symbolic hyperelasticity models obtained from different approaches. Our numerical results suggest that our approach extrapolates well outside the training data regime due to the precise incorporation of physics-based knowledge.
We propose a finite element discretization for the steady, generalized Navier-Stokes equations for fluids with shear-dependent viscosity, completed with inhomogeneous Dirichlet boundary conditions and an inhomogeneous divergence constraint. We establish (weak) convergence of discrete solutions as well as a priori error estimates for the velocity vector field and the scalar kinematic pressure. Numerical experiments complement the theoretical findings.
We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number $N$ of samples used to discretized the probability space. We show that this reduced system can be solved with optimal $O(N)$ complexity. We test the multigrid method on three problems: a linear-quadratic problem, possibly with a local or a boundary control, for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and $L^1$-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits excellent performances and robustness with respect to the parameters of interest.
This paper proposes a strategy to solve the problems of the conventional s-version of finite element method (SFEM) fundamentally. Because SFEM can reasonably model an analytical domain by superimposing meshes with different spatial resolutions, it has intrinsic advantages of local high accuracy, low computation time, and simple meshing procedure. However, it has disadvantages such as accuracy of numerical integration and matrix singularity. Although several additional techniques have been proposed to mitigate these limitations, they are computationally expensive or ad-hoc, and detract from its strengths. To solve these issues, we propose a novel strategy called B-spline based SFEM. To improve the accuracy of numerical integration, we employed cubic B-spline basis functions with $C^2$-continuity across element boundaries as the global basis functions. To avoid matrix singularity, we applied different basis functions to different meshes. Specifically, we employed the Lagrange basis functions as local basis functions. The numerical results indicate that using the proposed method, numerical integration can be calculated with sufficient accuracy without any additional techniques used in conventional SFEM. Furthermore, the proposed method avoids matrix singularity and is superior to conventional methods in terms of convergence for solving linear equations. Therefore, the proposed method has the potential to reduce computation time while maintaining a comparable accuracy to conventional SFEM.