亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a class of interacting particle systems for implementing a marginal maximum likelihood estimation (MLE) procedure to optimize over the parameters of a latent variable model. To do so, we propose a continuous-time interacting particle system which can be seen as a Langevin diffusion over an extended state space, where the number of particles acts as the inverse temperature parameter in classical settings for optimisation. Using Langevin diffusions, we prove nonasymptotic concentration bounds for the optimisation error of the maximum marginal likelihood estimator in terms of the number of particles in the particle system, the number of iterations of the algorithm, and the step-size parameter for the time discretisation analysis.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 隱馬爾科夫模型 · Markov · MoDELS · 講稿 ·
2023 年 5 月 15 日

A popular way to estimate the parameters of a hidden Markov model (HMM) is direct numerical maximization (DNM) of the (log-)likelihood function. The advantages of employing the TMB (Kristensen et al., 2016) framework in R for this purpose were illustrated recently Bacri et al. (2022). In this paper, we present extensions of these results in two directions. First, we present a practical way to obtain uncertainty estimates in form of confidence intervals (CIs) for the so-called smoothing probabilities at moderate computational and programming effort via TMB. Our approach thus permits to avoid computer-intensive bootstrap methods. By means of several examples, we illustrate patterns present for the derived CIs. Secondly, we investigate the performance of popular optimizers available in R when estimating HMMs via DNM. Hereby, our focus lies on the potential benefits of employing TMB. Investigated criteria via a number of simulation studies are convergence speed, accuracy, and the impact of (poor) initial values. Our findings suggest that all optimizers considered benefit in terms of speed from using the gradient supplied by TMB. When supplying both gradient and Hessian from TMB, the number of iterations reduces, suggesting a more efficient convergence to the maximum of the log-likelihood. Last, we briefly point out potential advantages of a hybrid approach.

Previous results have shown that a two time-scale update rule (TTUR) using different learning rates, such as different constant rates or different decaying rates, is useful for training generative adversarial networks (GANs) in theory and in practice. Moreover, not only the learning rate but also the batch size is important for training GANs with TTURs and they both affect the number of steps needed for training. This paper studies the relationship between batch size and the number of steps needed for training GANs with TTURs based on constant learning rates. We theoretically show that, for a TTUR with constant learning rates, the number of steps needed to find stationary points of the loss functions of both the discriminator and generator decreases as the batch size increases and that there exists a critical batch size minimizing the stochastic first-order oracle (SFO) complexity. Then, we use the Fr'echet inception distance (FID) as the performance measure for training and provide numerical results indicating that the number of steps needed to achieve a low FID score decreases as the batch size increases and that the SFO complexity increases once the batch size exceeds the measured critical batch size. Moreover, we show that measured critical batch sizes are close to the sizes estimated from our theoretical results.

We study the approximability of an existing framework for clustering edge-colored hypergraphs, which is closely related to chromatic correlation clustering and is motivated by machine learning and data mining applications where the goal is to cluster a set of objects based on multiway interactions of different categories or types. We present improved approximation guarantees based on linear programming, and show they are tight by proving a matching integrality gap. Our results also include new approximation hardness results, a combinatorial 2-approximation whose runtime is linear in the hypergraph size, and several new connections to well-studied objectives such as vertex cover and hypergraph multiway cut.

This research considers the ranking and selection with input uncertainty. The objective is to maximize the posterior probability of correctly selecting the best alternative under a fixed simulation budget, where each alternative is measured by its worst-case performance. We formulate the dynamic simulation budget allocation decision problem as a stochastic control problem under a Bayesian framework. Following the approximate dynamic programming theory, we derive a one-step-ahead dynamic optimal budget allocation policy and prove that this policy achieves consistency and asymptotic optimality. Numerical experiments demonstrate that the proposed procedure can significantly improve performance.

Originally introduced as a neural network for ensemble learning, mixture of experts (MoE) has recently become a fundamental building block of highly successful modern deep neural networks for heterogeneous data analysis in several applications, including those in machine learning, statistics, bioinformatics, economics, and medicine. Despite its popularity in practice, a satisfactory level of understanding of the convergence behavior of Gaussian-gated MoE parameter estimation is far from complete. The underlying reason for this challenge is the inclusion of covariates in the Gaussian gating and expert networks, which leads to their intrinsically complex interactions via partial differential equations with respect to their parameters. We address these issues by designing novel Voronoi loss functions to accurately capture heterogeneity in the maximum likelihood estimator (MLE) for resolving parameter estimation in these models. Our results reveal distinct behaviors of the MLE under two settings: the first setting is when all the location parameters in the Gaussian gating are non-zeros while the second setting is when there exists at least one zero-valued location parameter. Notably, these behaviors can be characterized by the solvability of two different systems of polynomial equations. Finally, we conduct a simulation study to verify our theoretical results.

We demonstrate the relevance of an algorithm called generalized iterative scaling (GIS) or simultaneous multiplicative algebraic reconstruction technique (SMART) and its rescaled block-iterative version (RBI-SMART) in the field of optimal transport (OT). Many OT problems can be tackled through the use of entropic regularization by solving the Schr\"odinger problem, which is an information projection problem, that is, with respect to the Kullback--Leibler divergence. Here we consider problems that have several affine constraints. It is well-known that cyclic information projections onto the individual affine sets converge to the solution. In practice, however, even these individual projections are not explicitly available in general. In this paper, we exchange them for one GIS iteration. If this is done for every affine set, we obtain RBI-SMART. We provide a convergence proof using an interpretation of these iterations as two-step affine projections in an equivalent problem. This is done in a slightly more general setting than RBI-SMART, since we use a mix of explicitly known information projections and GIS iterations. We proceed to specialize this algorithm to several OT applications. First, we find the measure that minimizes the regularized OT divergence to a given measure under moment constraints. Second and third, the proposed framework yields an algorithm for solving a regularized martingale OT problem, as well as a relaxed version of the barycentric weak OT problem. Finally, we show an approach from the literature for unbalanced OT problems.

We review Quasi Maximum Likelihood estimation of factor models for high-dimensional panels of time series. We consider two cases: (1) estimation when no dynamic model for the factors is specified (Bai and Li, 2016); (2) estimation based on the Kalman smoother and the Expectation Maximization algorithm thus allowing to model explicitly the factor dynamics (Doz et al., 2012). Our interest is in approximate factor models, i.e., when we allow for the idiosyncratic components to be mildly cross-sectionally, as well as serially, correlated. Although such setting apparently makes estimation harder, we show, in fact, that factor models do not suffer of the curse of dimensionality problem, but instead they enjoy a blessing of dimensionality property. In particular, given an approximate factor structure, if the cross-sectional dimension of the data, $N$, grows to infinity, we show that: (i) identification of the model is still possible, (ii) the mis-specification error due to the use of an exact factor model log-likelihood vanishes. Moreover, if we let also the sample size, $T$, grow to infinity, we can also consistently estimate all parameters of the model and make inference. The same is true for estimation of the latent factors which can be carried out by weighted least-squares, linear projection, or Kalman filtering/smoothing. We also compare the approaches presented with: Principal Component analysis and the classical, fixed $N$, exact Maximum Likelihood approach. We conclude with a discussion on efficiency of the considered estimators.

We develop the first active learning method in the predict-then-optimize framework. Specifically, we develop a learning method that sequentially decides whether to request the "labels" of feature samples from an unlabeled data stream, where the labels correspond to the parameters of an optimization model for decision-making. Our active learning method is the first to be directly informed by the decision error induced by the predicted parameters, which is referred to as the Smart Predict-then-Optimize (SPO) loss. Motivated by the structure of the SPO loss, our algorithm adopts a margin-based criterion utilizing the concept of distance to degeneracy and minimizes a tractable surrogate of the SPO loss on the collected data. In particular, we develop an efficient active learning algorithm with both hard and soft rejection variants, each with theoretical excess risk (i.e., generalization) guarantees. We further derive bounds on the label complexity, which refers to the number of samples whose labels are acquired to achieve a desired small level of SPO risk. Under some natural low-noise conditions, we show that these bounds can be better than the naive supervised learning approach that labels all samples. Furthermore, when using the SPO+ loss function, a specialized surrogate of the SPO loss, we derive a significantly smaller label complexity under separability conditions. We also present numerical evidence showing the practical value of our proposed algorithms in the settings of personalized pricing and the shortest path problem.

Despite much recent work, the true promise and limitations of the Quantum Alternating Operator Ansatz (QAOA) are unclear. A critical question regarding QAOA is to what extent its performance scales with the input size of the problem instance, in particular the necessary growth in the number of QAOA rounds to reach a high approximation ratio. We present numerical evidence for an exponential speed-up of QAOA over Grover-style unstructured search in finding approximate solutions to constrained optimization problems. Our result provides a strong hint that QAOA is able to exploit the structure of an optimization problem and thus overcome the lower bound for unstructured search. To this end, we conduct a comprehensive numerical study on several Hamming-weight constrained optimization problems for which we include combinations of all standardly studied mixer and phase separator Hamiltonians (Ring mixer, Clique mixer, Objective Value phase separator) as well as quantum minimum-finding inspired Hamiltonians (Grover mixer, Threshold-based phase separator). We identify Clique-Objective-QAOA with an exponential speed-up over Grover-Threshold-QAOA and tie the latter's scaling to that of unstructured search, with all other QAOA combinations coming in at a distant third. Our result suggests that maximizing QAOA performance requires a judicious choice of mixer and phase separator, and should trigger further research into other QAOA variations.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司