In recent years, the amount of data available on the internet and the number of users who utilize the Internet have increased at an unparalleled pace. The exponential development in the quantity of digital information accessible and the number of Internet users has created the possibility for information overload, impeding fast access to items of interest on the Internet. Information retrieval systems like as Google, DevilFinder, and Altavista have partly overcome this challenge, but prioritizing and customization of information (where a system maps accessible material to a user's interests and preferences) were lacking. This has resulted in a higher-than-ever need for recommender systems. Recommender systems are information filtering systems that address the issue of information overload by filtering important information fragments from a huge volume of dynamically produced data based on the user's interests, favorite things, preferences and ratings on the desired item. Recommender systems can figure out if a person would like an item or not based on their profile.
Since the start of the operational use of ensemble prediction systems, ensemble-based probabilistic forecasting has become the most advanced approach in weather prediction. However, despite the persistent development of the last three decades, ensemble forecasts still often suffer from the lack of calibration and might exhibit systematic bias, which calls for some form of statistical post-processing. Nowadays, one can choose from a large variety of post-processing approaches, where parametric methods provide full predictive distributions of the investigated weather quantity. Parameter estimation in these models is based on training data consisting of past forecast-observation pairs, thus post-processed forecasts are usually available only at those locations where training data are accessible. We propose a general clustering-based interpolation technique of extending calibrated predictive distributions from observation stations to any location in the ensemble domain where there are ensemble forecasts at hand. Focusing on the ensemble model output statistics (EMOS) post-processing technique, in a case study based on wind speed ensemble forecasts of the European Centre for Medium-Range Weather Forecasts, we demonstrate the predictive performance of various versions of the suggested method and show its superiority over the regionally estimated and interpolated EMOS models and the raw ensemble forecasts as well.
Qualitative probabilistic networks (QPNs) combine the conditional independence assumptions of Bayesian networks with the qualitative properties of positive and negative dependence. They formalise various intuitive properties of positive dependence to allow inferences over a large network of variables. However, we will demonstrate in this paper that, due to an incorrect symmetry property, many inferences obtained in non-binary QPNs are not mathematically true. We will provide examples of such incorrect inferences and briefly discuss possible resolutions.
Open sets are central to mathematics, especially analysis and topology, in ways few notions are. In most, if not all, computational approaches to mathematics, open sets are only studied indirectly via their 'codes' or 'representations'. In this paper, we study how hard it is to compute, given an arbitrary open set of reals, the most common representation, i.e. a countable set of open intervals. We work in Kleene's higher-order computability theory, which was historically based on the S1-S9 schemes and which now has an intuitive lambda calculus formulation due to the authors. We establish many computational equivalences between on one hand the 'structure' functional that converts open sets to the aforementioned representation, and on the other hand functionals arising from mainstream mathematics, like basic properties of semi-continuous functions, the Urysohn lemma, and the Tietze extension theorem. We also compare these functionals to known operations on regulated and bounded variation functions, and the Lebesgue measure restricted to closed sets. We obtain a number of natural computational equivalences for the latter involving theorems from mainstream mathematics.
It is well known that to accelerate stencil codes on CPUs or GPUs and to exploit hardware caches and their lines optimizers must find spatial and temporal locality of array accesses to harvest data-reuse opportunities. On FPGAs there is the burden that there are no built-in caches (or only pre-built hardware descriptions for cache blocks that are inefficient for stencil codes). But this paper demonstrates that this lack is also a chance as polyhedral methods can be used to generate stencil-specific cache-structures of the right sizes on the FPGA and to fill and flush them efficiently with wide bursts during stencil execution. The paper shows how to derive the appropriate directives and code restructurings from stencil codes so that the FPGA compiler generates fast stencil hardware. Switching on our optimization improves the runtime of a set of 10 stencils by between 43x and 156x.
In this note we consider the approximation of the Greeks Delta and Gamma of American-style options through the numerical solution of time-dependent partial differential complementarity problems (PDCPs). This approach is very attractive as it can yield accurate approximations to these Greeks at essentially no additional computational cost during the numerical solution of the PDCP for the pertinent option value function. For the temporal discretization, the Crank-Nicolson method is arguably the most popular method in computational finance. It is well-known, however, that this method can have an undesirable convergence behaviour in the approximation of the Greeks Delta and Gamma for American-style options, even when backward Euler damping (Rannacher smoothing) is employed. In this note we study for the temporal discretization an interesting family of diagonally implicit Runge-Kutta (DIRK) methods together with the two-stage Lobatto IIIC method. Through ample numerical experiments for one- and two-asset American-style options, it is shown that these methods can yield a regular second-order convergence behaviour for the option value as well as for the Greeks Delta and Gamma. A mutual comparison reveals that the DIRK method with suitably chosen parameter $\theta$ is preferable.
Remotely sensed data are dominated by mixed Land Use and Land Cover (LULC) types. Spectral unmixing (SU) is a key technique that disentangles mixed pixels into constituent LULC types and their abundance fractions. While existing studies on Deep Learning (DL) for SU typically focus on single time-step hyperspectral (HS) or multispectral (MS) data, our work pioneers SU using MODIS MS time series, addressing missing data with end-to-end DL models. Our approach enhances a Long-Short Term Memory (LSTM)-based model by incorporating geographic, topographic (geo-topographic), and climatic ancillary information. Notably, our method eliminates the need for explicit endmember extraction, instead learning the input-output relationship between mixed spectra and LULC abundances through supervised learning. Experimental results demonstrate that integrating spectral-temporal input data with geo-topographic and climatic information significantly improves the estimation of LULC abundances in mixed pixels. To facilitate this study, we curated a novel labeled dataset for Andalusia (Spain) with monthly MODIS multispectral time series at 460m resolution for 2013. Named Andalusia MultiSpectral MultiTemporal Unmixing (Andalusia-MSMTU), this dataset provides pixel-level annotations of LULC abundances along with ancillary information. The dataset (//zenodo.org/records/7752348) and code (//github.com/jrodriguezortega/MSMTU) are available to the public.
Graph neural networks (GNNs) excel in modeling relational data such as biological, social, and transportation networks, but the underpinnings of their success are not well understood. Traditional complexity measures from statistical learning theory fail to account for observed phenomena like the double descent or the impact of relational semantics on generalization error. Motivated by experimental observations of ``transductive'' double descent in key networks and datasets, we use analytical tools from statistical physics and random matrix theory to precisely characterize generalization in simple graph convolution networks on the contextual stochastic block model. Our results illuminate the nuances of learning on homophilic versus heterophilic data and predict double descent whose existence in GNNs has been questioned by recent work. We show how risk is shaped by the interplay between the graph noise, feature noise, and the number of training labels. Our findings apply beyond stylized models, capturing qualitative trends in real-world GNNs and datasets. As a case in point, we use our analytic insights to improve performance of state-of-the-art graph convolution networks on heterophilic datasets.
Polynomial approximations of functions are widely used in scientific computing. In certain applications, it is often desired to require the polynomial approximation to be non-negative (resp. non-positive), or bounded within a given range, due to constraints posed by the underlying physical problems. Efficient numerical methods are thus needed to enforce such conditions. In this paper, we discuss effective numerical algorithms for polynomial approximation under non-negativity constraints. We first formulate the constrained optimization problem, its primal and dual forms, and then discuss efficient first-order convex optimization methods, with a particular focus on high dimensional problems. Numerical examples are provided, for up to $200$ dimensions, to demonstrate the effectiveness and scalability of the methods.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.