亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents secure mempool designs under asymmetric DoS attacks. We formulate safety definitions under two abstract DoSes, namely eviction- and locking-based attacks. We propose a safe transaction admission framework for securing mempools, named saferAd, that achieves both eviction- and locking-safety. The proven security stems from an upper bound of the attack damage under locking DoSes and a lower bound of the attack cost under eviction DoSes. The evaluation by replaying real transaction traces shows saferAd incurs negligible latency or insignificant change of validator revenue.

相關內容

We proposed a new Convolution Neural Network implementation optimized for sparse 3D data inference. This implementation uses NanoVDB as the data structure to store the sparse tensor. It leaves a relatively small memory footprint while maintaining high performance. We demonstrate that this architecture is around 20 times faster than the state-of-the-art dense CNN model on a high-resolution 3D object classification network.

Future sequence represents the outcome after executing the action into the environment (i.e. the trajectory onwards). When driven by the information-theoretic concept of mutual information, it seeks maximally informative consequences. Explicit outcomes may vary across state, return, or trajectory serving different purposes such as credit assignment or imitation learning. However, the inherent nature of incorporating intrinsic motivation with reward maximization is often neglected. In this work, we propose a policy iteration scheme that seamlessly incorporates the mutual information, ensuring convergence to the optimal policy. Concurrently, a variational approach is introduced, which jointly learns the necessary quantity for estimating the mutual information and the dynamics model, providing a general framework for incorporating different forms of outcomes of interest. While we mainly focus on theoretical analysis, our approach opens the possibilities of leveraging intrinsic control with model learning to enhance sample efficiency and incorporate uncertainty of the environment into decision-making.

We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be $n^{\sigma}$ for arbitrarily small fixed $\sigma>0$. Importantly, the local memory may be substantially smaller than the number of clusters $k$, yet all our algorithms are fast, i.e., run in $O(1)$ rounds. We first devise a fast MPC algorithm for $O(1)$-approximation of uniform facility location. This is the first fully-scalable MPC algorithm that achieves $O(1)$-approximation for any clustering problem in general geometric setting; previous algorithms only provide $\mathrm{poly}(\log n)$-approximation or apply to restricted inputs, like low dimension or small number of clusters $k$; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this facility location result and devise a fast MPC algorithm that achieves $O(1)$-bicriteria approximation for $k$-Median and for $k$-Means, namely, it computes $(1+\varepsilon)k$ clusters of cost within $O(1/\varepsilon^2)$-factor of the optimum for $k$ clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

We derive high-dimensional Gaussian comparison results for the standard $V$-fold cross-validated risk estimates. Our results combine a recent stability-based argument for the low-dimensional central limit theorem of cross-validation with the high-dimensional Gaussian comparison framework for sums of independent random variables. These results give new insights into the joint sampling distribution of cross-validated risks in the context of model comparison and tuning parameter selection, where the number of candidate models and tuning parameters can be larger than the fitting sample size. As a consequence, our results provide theoretical support for a recent methodological development that constructs model confidence sets using cross-validation.

Sensing performance is typically evaluated by classical metrics, such as Cramer-Rao bound and signal-to-clutter-plus-noise ratio. The recent development of the integrated sensing and communication (ISAC) framework motivated the efforts to unify the metric for sensing and communication, where researchers have proposed to utilize mutual information (MI) to measure the sensing performance with deterministic signals. However, the need to communicate in ISAC systems necessitates the use of random signals for sensing applications and the closed-form evaluation for the sensing mutual information (SMI) with random signals is not yet available in the literature. This paper investigates the achievable performance and precoder design for sensing applications with random signals. For that purpose, we first derive the closed-form expression for the SMI with random signals by utilizing random matrix theory. The result reveals some interesting physical insights regarding the relation between the SMI with deterministic and random signals. The derived SMI is then utilized to optimize the precoder by leveraging a manifold-based optimization approach. The effectiveness of the proposed methods is validated by simulation results.

Accents, as variations from standard pronunciation, pose significant challenges for speech recognition systems. Although joint automatic speech recognition (ASR) and accent recognition (AR) training has been proven effective in handling multi-accent scenarios, current multi-task ASR-AR approaches overlook the granularity differences between tasks. Fine-grained units capture pronunciation-related accent characteristics, while coarse-grained units are better for learning linguistic information. Moreover, an explicit interaction of two tasks can also provide complementary information and improve the performance of each other, but it is rarely used by existing approaches. In this paper, we propose a novel Decoupling and Interacting Multi-task Network (DIMNet) for joint speech and accent recognition, which is comprised of a connectionist temporal classification (CTC) branch, an AR branch, an ASR branch, and a bottom feature encoder. Specifically, AR and ASR are first decoupled by separated branches and two-granular modeling units to learn task-specific representations. The AR branch is from our previously proposed linguistic-acoustic bimodal AR model and the ASR branch is an encoder-decoder based Conformer model. Then, for the task interaction, the CTC branch provides aligned text for the AR task, while accent embeddings extracted from our AR model are incorporated into the ASR branch's encoder and decoder. Finally, during ASR inference, a cross-granular rescoring method is introduced to fuse the complementary information from the CTC and attention decoder after the decoupling. Our experiments on English and Chinese datasets demonstrate the effectiveness of the proposed model, which achieves 21.45%/28.53% AR accuracy relative improvement and 32.33%/14.55% ASR error rate relative reduction over a published standard baseline, respectively.

Nonlinear optimal control problems for trajectory planning with obstacle avoidance present several challenges. While general-purpose optimizers and dynamic programming methods struggle when adopted separately, their combination enabled by a penalty approach was found capable of handling highly nonlinear systems while overcoming the curse of dimensionality. Nevertheless, using dynamic programming with a fixed state space discretization limits the set of reachable solutions, hindering convergence or requiring enormous memory resources for uniformly spaced grids. In this work we solve this issue by incorporating an adaptive refinement of the state space grid, splitting cells where needed to better capture the problem structure while requiring less discretization points overall. Numerical results on a space manipulator demonstrate the improved robustness and efficiency of the combined method with respect to the single components.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

北京阿比特科技有限公司