Modal parameter estimation of operational structures is often a challenging task when confronted with unwanted distortions (outliers) in field measurements. Atypical observations present a problem to operational modal analysis (OMA) algorithms, such as stochastic subspace identification (SSI), severely biasing parameter estimates and resulting in misidentification of the system. Despite this predicament, no simple mechanism currently exists capable of dealing with such anomalies in SSI. Addressing this problem, this paper first introduces a novel probabilistic formulation of stochastic subspace identification (Prob-SSI), realised using probabilistic projections. Mathematically, the equivalence between this model and the classic algorithm is demonstrated. This fresh perspective, viewing SSI as a problem in probabilistic inference, lays the necessary mathematical foundation to enable a plethora of new, more sophisticated OMA approaches. To this end, a statistically robust SSI algorithm (robust Prob-SSI) is developed, capable of providing a principled and automatic way of handling outlying or anomalous data in the measured timeseries, such as may occur in field recordings, e.g. intermittent sensor dropout. Robust Prob-SSI is shown to outperform conventional SSI when confronted with 'corrupted' data, exhibiting improved identification performance and higher levels of confidence in the found poles when viewing consistency (stabilisation) diagrams. Similar benefits are also demonstrated on the Z24 Bridge benchmark dataset, highlighting enhanced performance on measured systems.
Hypothesis transfer learning (HTL) contrasts domain adaptation by allowing for a previous task leverage, named the source, into a new one, the target, without requiring access to the source data. Indeed, HTL relies only on a hypothesis learnt from such source data, relieving the hurdle of expansive data storage and providing great practical benefits. Hence, HTL is highly beneficial for real-world applications relying on big data. The analysis of such a method from a theoretical perspective faces multiple challenges, particularly in classification tasks. This paper deals with this problem by studying the learning theory of HTL through algorithmic stability, an attractive theoretical framework for machine learning algorithms analysis. In particular, we are interested in the statistical behaviour of the regularized empirical risk minimizers in the case of binary classification. Our stability analysis provides learning guarantees under mild assumptions. Consequently, we derive several complexity-free generalization bounds for essential statistical quantities like the training error, the excess risk and cross-validation estimates. These refined bounds allow understanding the benefits of transfer learning and comparing the behaviour of standard losses in different scenarios, leading to valuable insights for practitioners.
In this extended abstract, we discuss the opportunity to formally verify that inference systems for probabilistic programming guarantee good performance. In particular, we focus on hybrid inference systems that combine exact and approximate inference to try to exploit the advantages of each. Their performance depends critically on a) the division between exact and approximate inference, and b) the computational resources consumed by exact inference. We describe several projects in this direction. Semi-symbolic Inference (SSI) is a type of hybrid inference system that provides limited guarantees by construction on the exact/approximate division. In addition to these limited guarantees, we also describe ongoing work to extend guarantees to a more complex class of programs, requiring a program analysis to ensure the guarantees. Finally, we also describe work on verifying that inference systems using delayed sampling -- another type of hybrid inference -- execute in bounded memory. Together, these projects show that verification can deliver the performance guarantees that probabilistic programming languages need.
The objective of clusterability evaluation is to check whether a clustering structure exists within the data set. As a crucial yet often-overlooked issue in cluster analysis, it is essential to conduct such a test before applying any clustering algorithm. If a data set is unclusterable, any subsequent clustering analysis would not yield valid results. Despite its importance, the majority of existing studies focus on numerical data, leaving the clusterability evaluation issue for categorical data as an open problem. Here we present TestCat, a testing-based approach to assess the clusterability of categorical data in terms of an analytical $p$-value. The key idea underlying TestCat is that clusterable categorical data possess many strongly correlated attribute pairs and hence the sum of chi-squared statistics of all attribute pairs is employed as the test statistic for $p$-value calculation. We apply our method to a set of benchmark categorical data sets, showing that TestCat outperforms those solutions based on existing clusterability evaluation methods for numeric data. To the best of our knowledge, our work provides the first way to effectively recognize the clusterability of categorical data in a statistically sound manner.
We consider a persuasion problem between a sender and a receiver whose utility may be nonlinear in her belief; we call such receivers risk-conscious. Such utility models arise when the receiver exhibits systematic biases away from expected-utility-maximization, such as uncertainty aversion (e.g., from sensitivity to the variance of the waiting time for a service). Due to this nonlinearity, the standard approach to finding the optimal persuasion mechanism using revelation principle fails. To overcome this difficulty, we use the underlying geometry of the problem to develop a convex optimization framework to find the optimal persuasion mechanism. We define the notion of full persuasion and use our framework to characterize conditions under which full persuasion can be achieved. We use our approach to study binary persuasion, where the receiver has two actions and the sender strictly prefers one of them at every state. Under a convexity assumption, we show that the binary persuasion problem reduces to a linear program, and establish a canonical set of signals where each signal either reveals the state or induces in the receiver uncertainty between two states. Finally, we discuss the broader applicability of our methods to more general contexts, and illustrate our methodology by studying information sharing of waiting times in service systems.
Several Deep Learning (DL) methods have recently been proposed for an automated identification of kidney stones during an ureteroscopy to enable rapid therapeutic decisions. Even if these DL approaches led to promising results, they are mainly appropriate for kidney stone types for which numerous labelled data are available. However, only few labelled images are available for some rare kidney stone types. This contribution exploits Deep Metric Learning (DML) methods i) to handle such classes with few samples, ii) to generalize well to out of distribution samples, and iii) to cope better with new classes which are added to the database. The proposed Guided Deep Metric Learning approach is based on a novel architecture which was designed to learn data representations in an improved way. The solution was inspired by Few-Shot Learning (FSL) and makes use of a teacher-student approach. The teacher model (GEMINI) generates a reduced hypothesis space based on prior knowledge from the labeled data, and is used it as a guide to a student model (i.e., ResNet50) through a Knowledge Distillation scheme. Extensive tests were first performed on two datasets separately used for the recognition, namely a set of images acquired for the surfaces of the kidney stone fragments, and a set of images of the fragment sections. The proposed DML-approach improved the identification accuracy by 10% and 12% in comparison to DL-methods and other DML-approaches, respectively. Moreover, model embeddings from the two dataset types were merged in an organized way through a multi-view scheme to simultaneously exploit the information of surface and section fragments. Test with the resulting mixed model improves the identification accuracy by at least 3% and up to 30% with respect to DL-models and shallow machine learning methods, respectively.
In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.
Gaussian Process Networks (GPNs) are a class of directed graphical models which employ Gaussian processes as priors for the conditional expectation of each variable given its parents in the network. The model allows describing continuous joint distributions in a compact but flexible manner with minimal parametric assumptions on the dependencies between variables. Bayesian structure learning of GPNs requires computing the posterior over graphs of the network and is computationally infeasible even in low dimensions. This work implements Monte Carlo and Markov Chain Monte Carlo methods to sample from the posterior distribution of network structures. As such, the approach follows the Bayesian paradigm, comparing models via their marginal likelihood and computing the posterior probability of the GPN features. Simulation studies show that our method outperforms state-of-the-art algorithms in recovering the graphical structure of the network and provides an accurate approximation of its posterior distribution.
In this paper, we propose a novel algorithm called Neuron-wise Parallel Subspace Correction Method (NPSC) for the finite neuron method that approximates numerical solutions of partial differential equations (PDEs) using neural network functions. Despite extremely extensive research activities in applying neural networks for numerical PDEs, there is still a serious lack of effective training algorithms that can achieve adequate accuracy, even for one-dimensional problems. Based on recent results on the spectral properties of linear layers and landscape analysis for single neuron problems, we develop a special type of subspace correction method that optimizes the linear layer and each neuron in the nonlinear layer separately. An optimal preconditioner that resolves the ill-conditioning of the linear layer is presented for one-dimensional problems, so that the linear layer is trained in a uniform number of iterations with respect to the number of neurons. In each single neuron problem, a good local minimum that avoids flat energy regions is found by a superlinearly convergent algorithm. Numerical experiments on function approximation problems and PDEs demonstrate better performance of the proposed method than other gradient-based methods.
Cell type deconvolution is a computational method that estimates the proportions of different cell types within bulk transcriptomics data by leveraging information from reference single-cell RNA sequencing data. Despite its origin as a simple linear regression model, this approach faces challenges due to technical and biological variability and biases between the bulk and single-cell datasets. While several new methods have been developed, most only provide point estimates of cell type proportions, neglecting the uncertainty inherent in these estimates. Consequently, false positives can arise when comparing changes in cell type proportions across multiple individuals. In this paper, we introduce MEAD, a comprehensive statistical framework for efficient cell type deconvolution. Our approach constructs asymptotically valid confidence intervals for individual cell type proportions, as well as for quantifying changes in cell type proportions across multiple individuals. Our analysis accounts for factors such as biological variability in gene expressions, gene-gene dependence, cross-platform biases, and sequencing errors, without relying on parametric assumptions about the data distributions. Moreover, we establish necessary and sufficient conditions for identifying cell type proportions in the presence of platform-specific biases across sequencing technologies.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.